{"title":"与频率相关成本的振荡二阶线性 ODE 的自适应谱方法","authors":"Fruzsina J. Agocs, Alex H. Barnett","doi":"10.1137/23m1546609","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 295-321, February 2024. <br/> Abstract. We introduce an efficient numerical method for second-order linear ODEs whose solution may vary between highly oscillatory and slowly changing over the solution interval. In oscillatory regions the solution is generated via a nonoscillatory phase function that obeys the nonlinear Riccati equation. We propose a defect correction iteration that gives an asymptotic series for such a phase function; this is numerically approximated on a Chebyshev grid with a small number of nodes. For analytic coefficients we prove that each iteration, up to a certain maximum number, reduces the residual by a factor of order of the local frequency. The algorithm adapts both the stepsize and the choice of method, switching to a conventional spectral collocation method away from oscillatory regions. In numerical experiments we find that our proposal outperforms other state-of-the-art oscillatory solvers, most significantly at low to intermediate frequencies and at low tolerances, where it may use up to [math] times fewer function evaluations. Even in high-frequency regimes, our implementation is on average 10 times faster than other specialized solvers.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"343 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Spectral Method for Oscillatory Second-Order Linear ODEs with Frequency-Independent Cost\",\"authors\":\"Fruzsina J. Agocs, Alex H. Barnett\",\"doi\":\"10.1137/23m1546609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 295-321, February 2024. <br/> Abstract. We introduce an efficient numerical method for second-order linear ODEs whose solution may vary between highly oscillatory and slowly changing over the solution interval. In oscillatory regions the solution is generated via a nonoscillatory phase function that obeys the nonlinear Riccati equation. We propose a defect correction iteration that gives an asymptotic series for such a phase function; this is numerically approximated on a Chebyshev grid with a small number of nodes. For analytic coefficients we prove that each iteration, up to a certain maximum number, reduces the residual by a factor of order of the local frequency. The algorithm adapts both the stepsize and the choice of method, switching to a conventional spectral collocation method away from oscillatory regions. In numerical experiments we find that our proposal outperforms other state-of-the-art oscillatory solvers, most significantly at low to intermediate frequencies and at low tolerances, where it may use up to [math] times fewer function evaluations. Even in high-frequency regimes, our implementation is on average 10 times faster than other specialized solvers.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"343 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1546609\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1546609","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An Adaptive Spectral Method for Oscillatory Second-Order Linear ODEs with Frequency-Independent Cost
SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 295-321, February 2024. Abstract. We introduce an efficient numerical method for second-order linear ODEs whose solution may vary between highly oscillatory and slowly changing over the solution interval. In oscillatory regions the solution is generated via a nonoscillatory phase function that obeys the nonlinear Riccati equation. We propose a defect correction iteration that gives an asymptotic series for such a phase function; this is numerically approximated on a Chebyshev grid with a small number of nodes. For analytic coefficients we prove that each iteration, up to a certain maximum number, reduces the residual by a factor of order of the local frequency. The algorithm adapts both the stepsize and the choice of method, switching to a conventional spectral collocation method away from oscillatory regions. In numerical experiments we find that our proposal outperforms other state-of-the-art oscillatory solvers, most significantly at low to intermediate frequencies and at low tolerances, where it may use up to [math] times fewer function evaluations. Even in high-frequency regimes, our implementation is on average 10 times faster than other specialized solvers.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.