用于视网膜成像异常检测的多分辨率自动编码器。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-06-01 Epub Date: 2024-01-29 DOI:10.1007/s13246-023-01381-x
Yixin Luo, Yangling Ma, Zhouwang Yang
{"title":"用于视网膜成像异常检测的多分辨率自动编码器。","authors":"Yixin Luo, Yangling Ma, Zhouwang Yang","doi":"10.1007/s13246-023-01381-x","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying unknown types of diseases is a crucial step in preceding retinal imaging classification for the sake of safety, which is known as anomaly detection of retinal imaging. However, the widely-used supervised learning algorithms are not suitable for this problem, since the data of the unknown category is unobtainable. Moreover, for retinal imaging with different types of anomalous regions, using a single-resolution input causes information loss. Therefore, we propose an unsupervised auto-encoder model with multi-resolution inputs and outputs. We provide a theoretical understanding of the effectiveness of reconstruction error and the improvement of self-supervised learning for anomaly detection. Our experiments on two widely-used retinal imaging datasets show that the proposed methods are superior to other methods, and further experiments verify the validity of each part of the proposed method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-resolution auto-encoder for anomaly detection of retinal imaging.\",\"authors\":\"Yixin Luo, Yangling Ma, Zhouwang Yang\",\"doi\":\"10.1007/s13246-023-01381-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying unknown types of diseases is a crucial step in preceding retinal imaging classification for the sake of safety, which is known as anomaly detection of retinal imaging. However, the widely-used supervised learning algorithms are not suitable for this problem, since the data of the unknown category is unobtainable. Moreover, for retinal imaging with different types of anomalous regions, using a single-resolution input causes information loss. Therefore, we propose an unsupervised auto-encoder model with multi-resolution inputs and outputs. We provide a theoretical understanding of the effectiveness of reconstruction error and the improvement of self-supervised learning for anomaly detection. Our experiments on two widely-used retinal imaging datasets show that the proposed methods are superior to other methods, and further experiments verify the validity of each part of the proposed method.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-023-01381-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-023-01381-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了安全起见,识别未知疾病类型是前期视网膜成像分类的关键步骤,即视网膜成像异常检测。然而,由于无法获得未知类别的数据,广泛使用的监督学习算法并不适合这一问题。此外,对于存在不同类型异常区域的视网膜成像,使用单一分辨率输入会造成信息丢失。因此,我们提出了一种具有多分辨率输入和输出的无监督自动编码器模型。我们从理论上理解了重建误差的有效性,并改进了异常检测的自监督学习。我们在两个广泛使用的视网膜成像数据集上进行的实验表明,所提出的方法优于其他方法,进一步的实验验证了所提出方法各个部分的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-resolution auto-encoder for anomaly detection of retinal imaging.

Multi-resolution auto-encoder for anomaly detection of retinal imaging.

Identifying unknown types of diseases is a crucial step in preceding retinal imaging classification for the sake of safety, which is known as anomaly detection of retinal imaging. However, the widely-used supervised learning algorithms are not suitable for this problem, since the data of the unknown category is unobtainable. Moreover, for retinal imaging with different types of anomalous regions, using a single-resolution input causes information loss. Therefore, we propose an unsupervised auto-encoder model with multi-resolution inputs and outputs. We provide a theoretical understanding of the effectiveness of reconstruction error and the improvement of self-supervised learning for anomaly detection. Our experiments on two widely-used retinal imaging datasets show that the proposed methods are superior to other methods, and further experiments verify the validity of each part of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信