基于集合对接的虚拟筛选和分子动力学模拟,研究马来西亚吉露蜜(KH)中的植物化学物质对SARS-CoV-2目标酶--人血管紧张素转换酶2(ACE-2)的作用。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Che Muhammad Khairul Hisyam Ismail, Azzmer Azzar Abdul Hamid, Nur Nadiah Abdul Rashid, Widya Lestari, Khairani Idah Mokhtar, Basma Ezzat Mustafa Alahmad, Mohd Ridzuan Mohd Abd Razak, Azlini Ismail
{"title":"基于集合对接的虚拟筛选和分子动力学模拟,研究马来西亚吉露蜜(KH)中的植物化学物质对SARS-CoV-2目标酶--人血管紧张素转换酶2(ACE-2)的作用。","authors":"Che Muhammad Khairul Hisyam Ismail, Azzmer Azzar Abdul Hamid, Nur Nadiah Abdul Rashid, Widya Lestari, Khairani Idah Mokhtar, Basma Ezzat Mustafa Alahmad, Mohd Ridzuan Mohd Abd Razak, Azlini Ismail","doi":"10.1080/07391102.2024.2308762","DOIUrl":null,"url":null,"abstract":"<p><p>The human angiotensin-converting enzyme 2 (ACE-2) receptor is a metalloenzyme that plays an important role in regulating blood pressure by modulating angiotensin II. This receptor facilitates SARS-CoV-2 entry into human cells <i>via</i> receptor-mediated endocytosis, causing the global COVID-19 pandemic and a major health crisis. Kelulut honey (KH), one of Malaysian honey recently gained attention for its distinct flavour and taste while having many nutritional and medicinal properties. Recent study demonstrates the antiviral potential of KH against SARS-CoV-2 by inhibiting ACE-2 <i>in vitro</i>, but the bioactive compound pertaining to the ACE-2 inhibition is yet unknown. An ensemble docking-based virtual screening was employed to screen the phytochemical compounds from KH with high binding affinity against the 10 best representative structures of ACE-2 that mostly formed from MD simulation. From 110 phytochemicals previously identified in KH, 27 compounds passed the ADMET analysis and proceeded to docking. Among the docked compound, SDC and FMN consistently exhibited strong binding to ACE-2's active site (-9.719 and -9.473 kcal/mol) and allosteric site (-7.305 and -7.464 kcal/mol) as compared to potent ACE-2 inhibitor, MLN 4760. Detailed trajectory analysis of MD simulation showed stable binding interaction towards active and allosteric sites of ACE-2. KH's compounds show promise in inhibiting SARS-CoV-2 binding to ACE-2 receptors, indicating potential for preventive use or as a supplement to other COVID-19 treatments. Additional research is needed to confirm KH's antiviral effects and its role in SARS-CoV-2 therapy, including prophylaxis and adjuvant treatment with vaccination.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"5393-5422"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ensemble docking-based virtual screening and molecular dynamics simulation of phytochemical compounds from Malaysian Kelulut Honey (KH) against SARS-CoV-2 target enzyme, human angiotensin-converting enzyme 2 (ACE-2).\",\"authors\":\"Che Muhammad Khairul Hisyam Ismail, Azzmer Azzar Abdul Hamid, Nur Nadiah Abdul Rashid, Widya Lestari, Khairani Idah Mokhtar, Basma Ezzat Mustafa Alahmad, Mohd Ridzuan Mohd Abd Razak, Azlini Ismail\",\"doi\":\"10.1080/07391102.2024.2308762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human angiotensin-converting enzyme 2 (ACE-2) receptor is a metalloenzyme that plays an important role in regulating blood pressure by modulating angiotensin II. This receptor facilitates SARS-CoV-2 entry into human cells <i>via</i> receptor-mediated endocytosis, causing the global COVID-19 pandemic and a major health crisis. Kelulut honey (KH), one of Malaysian honey recently gained attention for its distinct flavour and taste while having many nutritional and medicinal properties. Recent study demonstrates the antiviral potential of KH against SARS-CoV-2 by inhibiting ACE-2 <i>in vitro</i>, but the bioactive compound pertaining to the ACE-2 inhibition is yet unknown. An ensemble docking-based virtual screening was employed to screen the phytochemical compounds from KH with high binding affinity against the 10 best representative structures of ACE-2 that mostly formed from MD simulation. From 110 phytochemicals previously identified in KH, 27 compounds passed the ADMET analysis and proceeded to docking. Among the docked compound, SDC and FMN consistently exhibited strong binding to ACE-2's active site (-9.719 and -9.473 kcal/mol) and allosteric site (-7.305 and -7.464 kcal/mol) as compared to potent ACE-2 inhibitor, MLN 4760. Detailed trajectory analysis of MD simulation showed stable binding interaction towards active and allosteric sites of ACE-2. KH's compounds show promise in inhibiting SARS-CoV-2 binding to ACE-2 receptors, indicating potential for preventive use or as a supplement to other COVID-19 treatments. Additional research is needed to confirm KH's antiviral effects and its role in SARS-CoV-2 therapy, including prophylaxis and adjuvant treatment with vaccination.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"5393-5422\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2308762\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2308762","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类血管紧张素转换酶 2(ACE-2)受体是一种金属酶,通过调节血管紧张素 II 在调节血压方面发挥着重要作用。这种受体有助于 SARS-CoV-2 通过受体介导的内吞作用进入人体细胞,导致 COVID-19 在全球大流行,造成重大健康危机。Kelulut 蜂蜜(KH)是马来西亚的一种蜂蜜,最近因其独特的风味和口感以及多种营养和药用特性而备受关注。最近的研究表明,KH 在体外通过抑制 ACE-2 对 SARS-CoV-2 具有抗病毒潜力,但抑制 ACE-2 的生物活性化合物尚不清楚。本研究采用基于集合对接的虚拟筛选方法,筛选出与 MD 模拟形成的 ACE-2 的 10 个最佳代表结构具有高结合亲和力的 KH 植物化学物质。从之前在 KH 中鉴定出的 110 种植物化学物质中,有 27 种化合物通过了 ADMET 分析并进入了对接阶段。在对接的化合物中,与强效 ACE-2 抑制剂 MLN 4760 相比,SDC 和 FMN 始终表现出与 ACE-2 活性位点(-9.719 和 -9.473 kcal/mol)和异构位点(-7.305 和 -7.464 kcal/mol)的强结合力。MD 模拟的详细轨迹分析表明,这些化合物与 ACE-2 的活性位点和异构位点的结合相互作用非常稳定。KH 的化合物有望抑制 SARS-CoV-2 与 ACE-2 受体的结合,这表明该化合物具有预防或作为其他 COVID-19 治疗方法补充的潜力。还需要更多的研究来证实 KH 的抗病毒作用及其在 SARS-CoV-2 治疗中的作用,包括预防和疫苗接种的辅助治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble docking-based virtual screening and molecular dynamics simulation of phytochemical compounds from Malaysian Kelulut Honey (KH) against SARS-CoV-2 target enzyme, human angiotensin-converting enzyme 2 (ACE-2).

The human angiotensin-converting enzyme 2 (ACE-2) receptor is a metalloenzyme that plays an important role in regulating blood pressure by modulating angiotensin II. This receptor facilitates SARS-CoV-2 entry into human cells via receptor-mediated endocytosis, causing the global COVID-19 pandemic and a major health crisis. Kelulut honey (KH), one of Malaysian honey recently gained attention for its distinct flavour and taste while having many nutritional and medicinal properties. Recent study demonstrates the antiviral potential of KH against SARS-CoV-2 by inhibiting ACE-2 in vitro, but the bioactive compound pertaining to the ACE-2 inhibition is yet unknown. An ensemble docking-based virtual screening was employed to screen the phytochemical compounds from KH with high binding affinity against the 10 best representative structures of ACE-2 that mostly formed from MD simulation. From 110 phytochemicals previously identified in KH, 27 compounds passed the ADMET analysis and proceeded to docking. Among the docked compound, SDC and FMN consistently exhibited strong binding to ACE-2's active site (-9.719 and -9.473 kcal/mol) and allosteric site (-7.305 and -7.464 kcal/mol) as compared to potent ACE-2 inhibitor, MLN 4760. Detailed trajectory analysis of MD simulation showed stable binding interaction towards active and allosteric sites of ACE-2. KH's compounds show promise in inhibiting SARS-CoV-2 binding to ACE-2 receptors, indicating potential for preventive use or as a supplement to other COVID-19 treatments. Additional research is needed to confirm KH's antiviral effects and its role in SARS-CoV-2 therapy, including prophylaxis and adjuvant treatment with vaccination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信