Stephan Mohr, Yuji Nakatsukasa, Carolina Urzúa-Torres
{"title":"全算子预处理与线性系统求解精度","authors":"Stephan Mohr, Yuji Nakatsukasa, Carolina Urzúa-Torres","doi":"10.1093/imanum/drad104","DOIUrl":null,"url":null,"abstract":"Unless special conditions apply, the attempt to solve ill-conditioned systems of linear equations with standard numerical methods leads to uncontrollably high numerical error and often slow convergence of an iterative solver. In many cases, such systems arise from the discretization of operator equations with a large number of discrete variables and the ill-conditioning is tackled by means of preconditioning. A key observation in this paper is the sometimes overlooked fact that while traditional preconditioning effectively accelerates convergence of iterative methods, it generally does not improve the accuracy of the solution. Nonetheless, it is sometimes possible to overcome this barrier: accuracy can be improved significantly if the equation is transformed before discretization, a process we refer to as full operator preconditioning (FOP). We highlight that this principle is already used in various areas, including second kind integral equations and Olver–Townsend’s spectral method. We formulate a sufficient condition under which high accuracy can be obtained by FOP. We illustrate this for a fourth order differential equation which is discretized using finite elements.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full operator preconditioning and the accuracy of solving linear systems\",\"authors\":\"Stephan Mohr, Yuji Nakatsukasa, Carolina Urzúa-Torres\",\"doi\":\"10.1093/imanum/drad104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unless special conditions apply, the attempt to solve ill-conditioned systems of linear equations with standard numerical methods leads to uncontrollably high numerical error and often slow convergence of an iterative solver. In many cases, such systems arise from the discretization of operator equations with a large number of discrete variables and the ill-conditioning is tackled by means of preconditioning. A key observation in this paper is the sometimes overlooked fact that while traditional preconditioning effectively accelerates convergence of iterative methods, it generally does not improve the accuracy of the solution. Nonetheless, it is sometimes possible to overcome this barrier: accuracy can be improved significantly if the equation is transformed before discretization, a process we refer to as full operator preconditioning (FOP). We highlight that this principle is already used in various areas, including second kind integral equations and Olver–Townsend’s spectral method. We formulate a sufficient condition under which high accuracy can be obtained by FOP. We illustrate this for a fourth order differential equation which is discretized using finite elements.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Full operator preconditioning and the accuracy of solving linear systems
Unless special conditions apply, the attempt to solve ill-conditioned systems of linear equations with standard numerical methods leads to uncontrollably high numerical error and often slow convergence of an iterative solver. In many cases, such systems arise from the discretization of operator equations with a large number of discrete variables and the ill-conditioning is tackled by means of preconditioning. A key observation in this paper is the sometimes overlooked fact that while traditional preconditioning effectively accelerates convergence of iterative methods, it generally does not improve the accuracy of the solution. Nonetheless, it is sometimes possible to overcome this barrier: accuracy can be improved significantly if the equation is transformed before discretization, a process we refer to as full operator preconditioning (FOP). We highlight that this principle is already used in various areas, including second kind integral equations and Olver–Townsend’s spectral method. We formulate a sufficient condition under which high accuracy can be obtained by FOP. We illustrate this for a fourth order differential equation which is discretized using finite elements.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.