DTP-Net:通过多尺度特征重用学习在时频域重构脑电信号

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yan Pei;Jiahui Xu;Qianhao Chen;Chenhao Wang;Feng Yu;Lisan Zhang;Wei Luo
{"title":"DTP-Net:通过多尺度特征重用学习在时频域重构脑电信号","authors":"Yan Pei;Jiahui Xu;Qianhao Chen;Chenhao Wang;Feng Yu;Lisan Zhang;Wei Luo","doi":"10.1109/JBHI.2024.3358917","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) signals are prone to contamination by noise, such as ocular and muscle artifacts. Minimizing these artifacts is crucial for EEG-based downstream applications like disease diagnosis and brain-computer interface (BCI). This paper presents a new EEG denoising model, DTP-Net. It is a fully convolutional neural network comprising Densely-connected Temporal Pyramids (DTPs) placed between two learnable time-frequency transformations. In the time-frequency domain, DTPs facilitate efficient propagation of multi-scale features extracted from EEG signals of any length, leading to effective noise reduction. Comprehensive experiments on two public semi-simulated datasets demonstrate that the proposed DTP-Net consistently outperforms existing state-of-the-art methods on metrics including relative root mean square error (RRMSE) and signal-to-noise ratio improvement (\n<inline-formula><tex-math>$\\Delta$</tex-math></inline-formula>\nSNR). Moreover, the proposed DTP-Net is applied to a BCI classification task, yielding an improvement of up to 5.55% in accuracy. This confirms the potential of DTP-Net for applications in the fields of EEG-based neuroscience and neuro-engineering. An in-depth analysis further illustrates the representation learning behavior of each module in DTP-Net, demonstrating its robustness and reliability.","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DTP-Net: Learning to Reconstruct EEG Signals in Time-Frequency Domain by Multi-Scale Feature Reuse\",\"authors\":\"Yan Pei;Jiahui Xu;Qianhao Chen;Chenhao Wang;Feng Yu;Lisan Zhang;Wei Luo\",\"doi\":\"10.1109/JBHI.2024.3358917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) signals are prone to contamination by noise, such as ocular and muscle artifacts. Minimizing these artifacts is crucial for EEG-based downstream applications like disease diagnosis and brain-computer interface (BCI). This paper presents a new EEG denoising model, DTP-Net. It is a fully convolutional neural network comprising Densely-connected Temporal Pyramids (DTPs) placed between two learnable time-frequency transformations. In the time-frequency domain, DTPs facilitate efficient propagation of multi-scale features extracted from EEG signals of any length, leading to effective noise reduction. Comprehensive experiments on two public semi-simulated datasets demonstrate that the proposed DTP-Net consistently outperforms existing state-of-the-art methods on metrics including relative root mean square error (RRMSE) and signal-to-noise ratio improvement (\\n<inline-formula><tex-math>$\\\\Delta$</tex-math></inline-formula>\\nSNR). Moreover, the proposed DTP-Net is applied to a BCI classification task, yielding an improvement of up to 5.55% in accuracy. This confirms the potential of DTP-Net for applications in the fields of EEG-based neuroscience and neuro-engineering. An in-depth analysis further illustrates the representation learning behavior of each module in DTP-Net, demonstrating its robustness and reliability.\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10415157/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10415157/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)信号容易受到噪声的污染,如眼球和肌肉伪影。尽量减少这些伪影对基于脑电图的下游应用(如疾病诊断和脑机接口 (BCI))至关重要。本文介绍了一种新的脑电图去噪模型 DTP-Net。它是一个完全卷积神经网络,由密集连接的时序金字塔(DTP)组成,置于两个可学习的时频变换之间。在时频域中,DTPs 可有效传播从任意长度的脑电信号中提取的多尺度特征,从而有效降低噪声。在两个公开的半模拟数据集上进行的综合实验表明,在相对均方根误差(RRMSE)和信噪比改进(∆SNR)等指标上,所提出的 DTP-Net 始终优于现有的最先进方法。此外,拟议的 DTP-Net 还被应用于 BCI 分类任务,准确率提高了 5.55%。这证实了 DTP-Net 在基于脑电图的神经科学和神经工程领域的应用潜力。深入分析进一步说明了 DTP-Net 中每个模块的表征学习行为,证明了它的鲁棒性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DTP-Net: Learning to Reconstruct EEG Signals in Time-Frequency Domain by Multi-Scale Feature Reuse
Electroencephalography (EEG) signals are prone to contamination by noise, such as ocular and muscle artifacts. Minimizing these artifacts is crucial for EEG-based downstream applications like disease diagnosis and brain-computer interface (BCI). This paper presents a new EEG denoising model, DTP-Net. It is a fully convolutional neural network comprising Densely-connected Temporal Pyramids (DTPs) placed between two learnable time-frequency transformations. In the time-frequency domain, DTPs facilitate efficient propagation of multi-scale features extracted from EEG signals of any length, leading to effective noise reduction. Comprehensive experiments on two public semi-simulated datasets demonstrate that the proposed DTP-Net consistently outperforms existing state-of-the-art methods on metrics including relative root mean square error (RRMSE) and signal-to-noise ratio improvement ( $\Delta$ SNR). Moreover, the proposed DTP-Net is applied to a BCI classification task, yielding an improvement of up to 5.55% in accuracy. This confirms the potential of DTP-Net for applications in the fields of EEG-based neuroscience and neuro-engineering. An in-depth analysis further illustrates the representation learning behavior of each module in DTP-Net, demonstrating its robustness and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信