{"title":"在容器集群中联合自动扩展容器和虚拟机以优化成本","authors":"","doi":"10.1007/s10723-023-09732-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Autoscaling enables container cluster orchestrators to automatically adjust computational resources, such as containers and Virtual Machines (VMs), to handle fluctuating workloads effectively. This adaptation can involve modifying the amount of resources (horizontal scaling) or adjusting their computational capacity (vertical scaling). The motivation for our work stems from the limitations of previous autoscaling approaches, which are either partial (scaling containers or VMs, but not both) or excessively complex to be used in real systems. This complexity arises from their use of models with a large number of variables and the addressing of two simultaneous challenges: achieving the optimal deployment for a single scheduling window and managing the transition between successive scheduling windows. We propose an Integer Linear Programming (ILP) model to address the challenge of autoscaling containers and VMs jointly, both horizontally and vertically, to minimize deployment costs. This model is designed to be used with predictive autoscalers and be solved in a reasonable time, even for large clusters. To this end, improvements and reasonable simplifications with respect to previous models have been carried out to drastically reduce the size of the resource allocation problem. Furthermore, the proposed model provides an enhanced representation of system performance in comparison to previous approaches. A tool called Conlloovia has been developed to implement this model. To evaluate its performance, we have conducted a comprehensive assessment, comparing it with two heuristic allocators with different problem sizes. Our findings indicate that Conlloovia consistently demonstrates lower deployment costs in a significant number of cases. Conlloovia has also been evaluated with a real application, using synthetic and real workload traces, as well as different scheduling windows, with deployment costs approximately 20% lower than heuristic allocators.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"44 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Autoscaling of Containers and Virtual Machines for Cost Optimization in Container Clusters\",\"authors\":\"\",\"doi\":\"10.1007/s10723-023-09732-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Autoscaling enables container cluster orchestrators to automatically adjust computational resources, such as containers and Virtual Machines (VMs), to handle fluctuating workloads effectively. This adaptation can involve modifying the amount of resources (horizontal scaling) or adjusting their computational capacity (vertical scaling). The motivation for our work stems from the limitations of previous autoscaling approaches, which are either partial (scaling containers or VMs, but not both) or excessively complex to be used in real systems. This complexity arises from their use of models with a large number of variables and the addressing of two simultaneous challenges: achieving the optimal deployment for a single scheduling window and managing the transition between successive scheduling windows. We propose an Integer Linear Programming (ILP) model to address the challenge of autoscaling containers and VMs jointly, both horizontally and vertically, to minimize deployment costs. This model is designed to be used with predictive autoscalers and be solved in a reasonable time, even for large clusters. To this end, improvements and reasonable simplifications with respect to previous models have been carried out to drastically reduce the size of the resource allocation problem. Furthermore, the proposed model provides an enhanced representation of system performance in comparison to previous approaches. A tool called Conlloovia has been developed to implement this model. To evaluate its performance, we have conducted a comprehensive assessment, comparing it with two heuristic allocators with different problem sizes. Our findings indicate that Conlloovia consistently demonstrates lower deployment costs in a significant number of cases. Conlloovia has also been evaluated with a real application, using synthetic and real workload traces, as well as different scheduling windows, with deployment costs approximately 20% lower than heuristic allocators.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09732-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09732-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Joint Autoscaling of Containers and Virtual Machines for Cost Optimization in Container Clusters
Abstract
Autoscaling enables container cluster orchestrators to automatically adjust computational resources, such as containers and Virtual Machines (VMs), to handle fluctuating workloads effectively. This adaptation can involve modifying the amount of resources (horizontal scaling) or adjusting their computational capacity (vertical scaling). The motivation for our work stems from the limitations of previous autoscaling approaches, which are either partial (scaling containers or VMs, but not both) or excessively complex to be used in real systems. This complexity arises from their use of models with a large number of variables and the addressing of two simultaneous challenges: achieving the optimal deployment for a single scheduling window and managing the transition between successive scheduling windows. We propose an Integer Linear Programming (ILP) model to address the challenge of autoscaling containers and VMs jointly, both horizontally and vertically, to minimize deployment costs. This model is designed to be used with predictive autoscalers and be solved in a reasonable time, even for large clusters. To this end, improvements and reasonable simplifications with respect to previous models have been carried out to drastically reduce the size of the resource allocation problem. Furthermore, the proposed model provides an enhanced representation of system performance in comparison to previous approaches. A tool called Conlloovia has been developed to implement this model. To evaluate its performance, we have conducted a comprehensive assessment, comparing it with two heuristic allocators with different problem sizes. Our findings indicate that Conlloovia consistently demonstrates lower deployment costs in a significant number of cases. Conlloovia has also been evaluated with a real application, using synthetic and real workload traces, as well as different scheduling windows, with deployment costs approximately 20% lower than heuristic allocators.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.