{"title":"旋转波浪形圆筒对翅片状圆筒中纳米相变材料生物对流的影响","authors":"Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly","doi":"10.1615/jpormedia.2024050696","DOIUrl":null,"url":null,"abstract":"Numerical investigations were conducted on the bioconvection flow of nano-encapsulated phase change materials with oxytactic microorganisms in a circular annulus with a rotating wavy inner cylinder. The incompressible smoothed particle hydrodynamics method was applied to solve the governing partial differential equations for the velocity, temperature, concentration, and density of motile microorganisms. Compared with the conventional mesh–based method, this mesh-free, particle-based approach offers strong advantages in the simulation of complex problems with free surfaces and moving boundaries with large displacements. The pertinent parameters are the undulation number (N_und = 2-36), bioconvection Rayleigh number (〖Ra〗_b = 1-1000), Darcy parameter (Da = 10^(-5)-10^(-2)), length of the inner fin (L_Fin = 0.05-0.15), radius of the inner wavy cylinder (R_c = 0.05-0.25), Rayleigh number (Ra = 10^3-10^5), undulation amplitude of the inner wavy cylinder surface (A = 0.1-0.4), and frequency parameter (ω = 1-5). The results showed that the undulation number of the inner wavy cylinder enhanced the flow of the oxytactic microorganisms and isotherms, whereas it had the reverse effect on the velocity, decreasing the maximum velocity by 26.56%. In addition, the comparatively high undulation amplitude and frequency increased the average Nusselt and Sherwood numbers. It was found that the embedded wavy cylinder interacting with fins plays an important role in enhancing heat transfer and the bioconvection flow within a closed domain.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":"212 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER\",\"authors\":\"Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly\",\"doi\":\"10.1615/jpormedia.2024050696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical investigations were conducted on the bioconvection flow of nano-encapsulated phase change materials with oxytactic microorganisms in a circular annulus with a rotating wavy inner cylinder. The incompressible smoothed particle hydrodynamics method was applied to solve the governing partial differential equations for the velocity, temperature, concentration, and density of motile microorganisms. Compared with the conventional mesh–based method, this mesh-free, particle-based approach offers strong advantages in the simulation of complex problems with free surfaces and moving boundaries with large displacements. The pertinent parameters are the undulation number (N_und = 2-36), bioconvection Rayleigh number (〖Ra〗_b = 1-1000), Darcy parameter (Da = 10^(-5)-10^(-2)), length of the inner fin (L_Fin = 0.05-0.15), radius of the inner wavy cylinder (R_c = 0.05-0.25), Rayleigh number (Ra = 10^3-10^5), undulation amplitude of the inner wavy cylinder surface (A = 0.1-0.4), and frequency parameter (ω = 1-5). The results showed that the undulation number of the inner wavy cylinder enhanced the flow of the oxytactic microorganisms and isotherms, whereas it had the reverse effect on the velocity, decreasing the maximum velocity by 26.56%. In addition, the comparatively high undulation amplitude and frequency increased the average Nusselt and Sherwood numbers. It was found that the embedded wavy cylinder interacting with fins plays an important role in enhancing heat transfer and the bioconvection flow within a closed domain.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024050696\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024050696","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER
Numerical investigations were conducted on the bioconvection flow of nano-encapsulated phase change materials with oxytactic microorganisms in a circular annulus with a rotating wavy inner cylinder. The incompressible smoothed particle hydrodynamics method was applied to solve the governing partial differential equations for the velocity, temperature, concentration, and density of motile microorganisms. Compared with the conventional mesh–based method, this mesh-free, particle-based approach offers strong advantages in the simulation of complex problems with free surfaces and moving boundaries with large displacements. The pertinent parameters are the undulation number (N_und = 2-36), bioconvection Rayleigh number (〖Ra〗_b = 1-1000), Darcy parameter (Da = 10^(-5)-10^(-2)), length of the inner fin (L_Fin = 0.05-0.15), radius of the inner wavy cylinder (R_c = 0.05-0.25), Rayleigh number (Ra = 10^3-10^5), undulation amplitude of the inner wavy cylinder surface (A = 0.1-0.4), and frequency parameter (ω = 1-5). The results showed that the undulation number of the inner wavy cylinder enhanced the flow of the oxytactic microorganisms and isotherms, whereas it had the reverse effect on the velocity, decreasing the maximum velocity by 26.56%. In addition, the comparatively high undulation amplitude and frequency increased the average Nusselt and Sherwood numbers. It was found that the embedded wavy cylinder interacting with fins plays an important role in enhancing heat transfer and the bioconvection flow within a closed domain.
期刊介绍:
The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.