最大投影维数-II 的亲和半群

Pub Date : 2024-01-24 DOI:10.1007/s00233-023-10405-7
Om Prakash Bhardwaj, Indranath Sengupta
{"title":"最大投影维数-II 的亲和半群","authors":"Om Prakash Bhardwaj, Indranath Sengupta","doi":"10.1007/s00233-023-10405-7","DOIUrl":null,"url":null,"abstract":"<p>If the Krull dimension of the semigroup ring is greater than one, then affine semigroups of maximal projective dimension (<span>\\(\\textrm{MPD}\\)</span>) are not Cohen–Macaulay, but they may be Buchsbaum. We give a necessary and sufficient condition for simplicial <span>\\(\\textrm{MPD}\\)</span>-semigroups to be Buchsbaum in terms of pseudo-Frobenius elements. We give certain characterizations of <span>\\(\\prec \\)</span>-almost symmetric <span>\\({\\mathcal {C}}\\)</span>-semigroups. When the cone is full, we prove the irreducible <span>\\({\\mathcal {C}}\\)</span>-semigroups, and <span>\\(\\prec \\)</span>-almost symmetric <span>\\({\\mathcal {C}}\\)</span>-semigroups with Betti-type three satisfy the extended Wilf conjecture. For <span>\\(e \\ge 4\\)</span>, we give a class of MPD-semigroups in <span>\\({\\mathbb {N}}^2\\)</span> such that there is no upper bound on the Betti-type in terms of embedding dimension <i>e</i>. Thus, the Betti-type may not be a bounded function of the embedding dimension. We further explore the submonoids of <span>\\({\\mathbb {N}}^d\\)</span>, which satisfy the Arf property, and prove that Arf submonoids containing multiplicity are <span>\\(\\textrm{PI}\\)</span>-monoids.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine semigroups of maximal projective dimension-II\",\"authors\":\"Om Prakash Bhardwaj, Indranath Sengupta\",\"doi\":\"10.1007/s00233-023-10405-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If the Krull dimension of the semigroup ring is greater than one, then affine semigroups of maximal projective dimension (<span>\\\\(\\\\textrm{MPD}\\\\)</span>) are not Cohen–Macaulay, but they may be Buchsbaum. We give a necessary and sufficient condition for simplicial <span>\\\\(\\\\textrm{MPD}\\\\)</span>-semigroups to be Buchsbaum in terms of pseudo-Frobenius elements. We give certain characterizations of <span>\\\\(\\\\prec \\\\)</span>-almost symmetric <span>\\\\({\\\\mathcal {C}}\\\\)</span>-semigroups. When the cone is full, we prove the irreducible <span>\\\\({\\\\mathcal {C}}\\\\)</span>-semigroups, and <span>\\\\(\\\\prec \\\\)</span>-almost symmetric <span>\\\\({\\\\mathcal {C}}\\\\)</span>-semigroups with Betti-type three satisfy the extended Wilf conjecture. For <span>\\\\(e \\\\ge 4\\\\)</span>, we give a class of MPD-semigroups in <span>\\\\({\\\\mathbb {N}}^2\\\\)</span> such that there is no upper bound on the Betti-type in terms of embedding dimension <i>e</i>. Thus, the Betti-type may not be a bounded function of the embedding dimension. We further explore the submonoids of <span>\\\\({\\\\mathbb {N}}^d\\\\)</span>, which satisfy the Arf property, and prove that Arf submonoids containing multiplicity are <span>\\\\(\\\\textrm{PI}\\\\)</span>-monoids.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10405-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-023-10405-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果半群环的克鲁尔维度大于一,那么最大投影维度的仿射半群(\(\textrm{MPD}\))就不是科恩-麦考莱半群,但它们可能是布赫斯鲍姆半群。我们从伪弗罗贝纽斯元素的角度给出了简单(\textrm{MPD}\)半群成为布赫斯鲍姆半群的必要条件和充分条件。我们给出了几乎对称的 \(\prec\)-semigroups 的某些特征。当锥体是满的时候,我们证明了不可还原的({\mathcal {C}})-半群,以及具有贝蒂型三的(\prec \)-几乎对称的({\mathcal {C}})-半群满足扩展的威尔弗猜想。对于 \(e \ge 4\), 我们给出了一类在 \({\mathbb {N}}^2\) 中的 MPD-半群,它们的 Betti-type 在嵌入维数 e 上没有上界。我们进一步探讨了满足 Arf 特性的 \({\mathbb {N}}^d\) 的子单子,并证明了包含多重性的 Arf 子单子是 \(textrm{PI}\) 单子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Affine semigroups of maximal projective dimension-II

分享
查看原文
Affine semigroups of maximal projective dimension-II

If the Krull dimension of the semigroup ring is greater than one, then affine semigroups of maximal projective dimension (\(\textrm{MPD}\)) are not Cohen–Macaulay, but they may be Buchsbaum. We give a necessary and sufficient condition for simplicial \(\textrm{MPD}\)-semigroups to be Buchsbaum in terms of pseudo-Frobenius elements. We give certain characterizations of \(\prec \)-almost symmetric \({\mathcal {C}}\)-semigroups. When the cone is full, we prove the irreducible \({\mathcal {C}}\)-semigroups, and \(\prec \)-almost symmetric \({\mathcal {C}}\)-semigroups with Betti-type three satisfy the extended Wilf conjecture. For \(e \ge 4\), we give a class of MPD-semigroups in \({\mathbb {N}}^2\) such that there is no upper bound on the Betti-type in terms of embedding dimension e. Thus, the Betti-type may not be a bounded function of the embedding dimension. We further explore the submonoids of \({\mathbb {N}}^d\), which satisfy the Arf property, and prove that Arf submonoids containing multiplicity are \(\textrm{PI}\)-monoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信