{"title":"高 K 群上的 Lambda 模块结构","authors":"Sourayan Banerjee, Vivek Sadhu","doi":"10.1007/s40062-024-00339-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we show that for a quasicompact scheme <i>X</i> and <span>\\(n>0,\\)</span> the <i>n</i>-th <i>K</i>-group <span>\\(K_{n}(X)\\)</span> is a <span>\\(\\lambda \\)</span>-module over a <span>\\(\\lambda \\)</span>-ring <span>\\(K_{0}(X)\\)</span> in the sense of Hesselholt.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lambda module structure on higher K-groups\",\"authors\":\"Sourayan Banerjee, Vivek Sadhu\",\"doi\":\"10.1007/s40062-024-00339-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we show that for a quasicompact scheme <i>X</i> and <span>\\\\(n>0,\\\\)</span> the <i>n</i>-th <i>K</i>-group <span>\\\\(K_{n}(X)\\\\)</span> is a <span>\\\\(\\\\lambda \\\\)</span>-module over a <span>\\\\(\\\\lambda \\\\)</span>-ring <span>\\\\(K_{0}(X)\\\\)</span> in the sense of Hesselholt.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00339-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00339-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们证明了对于一个准紧密方案 X 和 \(n>0,\),第 n 个 K 群 \(K_{n}(X)\) 是一个海瑟霍尔特意义上的在\(\lambda\)-环 \(K_{0}(X)\) 上的\(\lambda\)-模块。
In this article, we show that for a quasicompact scheme X and \(n>0,\) the n-th K-group \(K_{n}(X)\) is a \(\lambda \)-module over a \(\lambda \)-ring \(K_{0}(X)\) in the sense of Hesselholt.