$$5 times 5$ 完全正矩阵的圆锥体

Pub Date : 2024-01-24 DOI:10.1007/s00454-023-00620-y
Max Pfeffer, José Alejandro Samper
{"title":"$$5 times 5$ 完全正矩阵的圆锥体","authors":"Max Pfeffer, José Alejandro Samper","doi":"10.1007/s00454-023-00620-y","DOIUrl":null,"url":null,"abstract":"<p>We study the cone of completely positive (cp) matrices for the first interesting case <span>\\(n = 5\\)</span>. This is a semialgebraic set for which the polynomial equalities and inequlities that define its boundary can be derived. We characterize the different loci of this boundary and we examine the two open sets with cp-rank 5 or 6. A numerical algorithm is presented that is fast and able to compute the cp-factorization even for matrices in the boundary. With our results, many new example cases can be produced and several insightful numerical experiments are performed that illustrate the difficulty of the cp-factorization problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cone of $$5\\\\times 5$$ Completely Positive Matrices\",\"authors\":\"Max Pfeffer, José Alejandro Samper\",\"doi\":\"10.1007/s00454-023-00620-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the cone of completely positive (cp) matrices for the first interesting case <span>\\\\(n = 5\\\\)</span>. This is a semialgebraic set for which the polynomial equalities and inequlities that define its boundary can be derived. We characterize the different loci of this boundary and we examine the two open sets with cp-rank 5 or 6. A numerical algorithm is presented that is fast and able to compute the cp-factorization even for matrices in the boundary. With our results, many new example cases can be produced and several insightful numerical experiments are performed that illustrate the difficulty of the cp-factorization problem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00620-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00620-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了第一种有趣情况 \(n = 5\) 下的完全正(cp)矩阵锥。这是一个半代数集合,可以推导出定义其边界的多项式等式和不等式。我们描述了这个边界的不同位置,并研究了 cp-rank 5 或 6 的两个开放集。我们提出了一种快速的数值算法,它甚至能够计算边界中矩阵的 cp 因式分解。根据我们的结果,可以产生许多新的示例案例,并进行了几个深入的数值实验,以说明 cp 因式分解问题的难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Cone of $$5\times 5$$ Completely Positive Matrices

分享
查看原文
The Cone of $$5\times 5$$ Completely Positive Matrices

We study the cone of completely positive (cp) matrices for the first interesting case \(n = 5\). This is a semialgebraic set for which the polynomial equalities and inequlities that define its boundary can be derived. We characterize the different loci of this boundary and we examine the two open sets with cp-rank 5 or 6. A numerical algorithm is presented that is fast and able to compute the cp-factorization even for matrices in the boundary. With our results, many new example cases can be produced and several insightful numerical experiments are performed that illustrate the difficulty of the cp-factorization problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信