{"title":"佛罗里达中新世马(Equidae)的物种出现:采样、生态,还是两者兼有?","authors":"Stephanie R. Killingsworth, Bruce J. MacFadden","doi":"10.1017/pab.2023.35","DOIUrl":null,"url":null,"abstract":"During the late Miocene and early Pliocene (latest Hemphillian, Hh4 interval, 5.7 to 4.75 Ma) a distinctive suite of four species of extinct horses (Family Equidae) were widespread in North America. This includes <jats:italic>Nannippus aztecus</jats:italic>, <jats:italic>Neohipparion eurystyle</jats:italic>, <jats:italic>Astrohippus stocki</jats:italic>, and <jats:italic>Dinohippus mexicanus</jats:italic>. In Florida, two additional equid species, <jats:italic>Pseudhipparion simpsoni</jats:italic> and <jats:italic>Cormohipparion emsliei</jats:italic>, are also typically found at Hh4 localities. Here we compare horses from four Hh4 Florida fossil sites, including three from the Bone Valley mines and a fourth from the recently discovered Montbrook site. Two of these sites have all six expected species, one has five species, and one has only four species present. To explain these differences, we used species counts from research databases and rarefaction simulation to clarify the relative abundances, species richness, and occurrences of these horses from these four sites. The Palmetto Mine (Agrico) site, with five equid species, appears to lack the sixth species owing to ecological reasons. This is different from Montbrook, the site with only four of the six species. Results indicate that Montbrook is likely lacking two missing equid species for a couple of reasons: sampling bias and biological/ecological causes. Our results demonstrate that sampling biases can account for observed equid species richness when the overall abundance of certain equid species is low. Nevertheless, other factors, including ecology and with sufficient resolution, perhaps also time, may also explain the distribution and occurrences of individual species at these and other fossil sites. In a broader perspective, analyses such as this example provide an opportunity to address a persistent challenge in paleontology, that is, how do we explain absences of extinct taxa from the fossil record?","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Species occurrences of Mio-Pliocene horses (Equidae) from Florida: sampling, ecology, or both?\",\"authors\":\"Stephanie R. Killingsworth, Bruce J. MacFadden\",\"doi\":\"10.1017/pab.2023.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the late Miocene and early Pliocene (latest Hemphillian, Hh4 interval, 5.7 to 4.75 Ma) a distinctive suite of four species of extinct horses (Family Equidae) were widespread in North America. This includes <jats:italic>Nannippus aztecus</jats:italic>, <jats:italic>Neohipparion eurystyle</jats:italic>, <jats:italic>Astrohippus stocki</jats:italic>, and <jats:italic>Dinohippus mexicanus</jats:italic>. In Florida, two additional equid species, <jats:italic>Pseudhipparion simpsoni</jats:italic> and <jats:italic>Cormohipparion emsliei</jats:italic>, are also typically found at Hh4 localities. Here we compare horses from four Hh4 Florida fossil sites, including three from the Bone Valley mines and a fourth from the recently discovered Montbrook site. Two of these sites have all six expected species, one has five species, and one has only four species present. To explain these differences, we used species counts from research databases and rarefaction simulation to clarify the relative abundances, species richness, and occurrences of these horses from these four sites. The Palmetto Mine (Agrico) site, with five equid species, appears to lack the sixth species owing to ecological reasons. This is different from Montbrook, the site with only four of the six species. Results indicate that Montbrook is likely lacking two missing equid species for a couple of reasons: sampling bias and biological/ecological causes. Our results demonstrate that sampling biases can account for observed equid species richness when the overall abundance of certain equid species is low. Nevertheless, other factors, including ecology and with sufficient resolution, perhaps also time, may also explain the distribution and occurrences of individual species at these and other fossil sites. In a broader perspective, analyses such as this example provide an opportunity to address a persistent challenge in paleontology, that is, how do we explain absences of extinct taxa from the fossil record?\",\"PeriodicalId\":54646,\"journal\":{\"name\":\"Paleobiology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2023.35\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2023.35","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Species occurrences of Mio-Pliocene horses (Equidae) from Florida: sampling, ecology, or both?
During the late Miocene and early Pliocene (latest Hemphillian, Hh4 interval, 5.7 to 4.75 Ma) a distinctive suite of four species of extinct horses (Family Equidae) were widespread in North America. This includes Nannippus aztecus, Neohipparion eurystyle, Astrohippus stocki, and Dinohippus mexicanus. In Florida, two additional equid species, Pseudhipparion simpsoni and Cormohipparion emsliei, are also typically found at Hh4 localities. Here we compare horses from four Hh4 Florida fossil sites, including three from the Bone Valley mines and a fourth from the recently discovered Montbrook site. Two of these sites have all six expected species, one has five species, and one has only four species present. To explain these differences, we used species counts from research databases and rarefaction simulation to clarify the relative abundances, species richness, and occurrences of these horses from these four sites. The Palmetto Mine (Agrico) site, with five equid species, appears to lack the sixth species owing to ecological reasons. This is different from Montbrook, the site with only four of the six species. Results indicate that Montbrook is likely lacking two missing equid species for a couple of reasons: sampling bias and biological/ecological causes. Our results demonstrate that sampling biases can account for observed equid species richness when the overall abundance of certain equid species is low. Nevertheless, other factors, including ecology and with sufficient resolution, perhaps also time, may also explain the distribution and occurrences of individual species at these and other fossil sites. In a broader perspective, analyses such as this example provide an opportunity to address a persistent challenge in paleontology, that is, how do we explain absences of extinct taxa from the fossil record?
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.