结构保留四元双共轭梯度法

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Tao Li, Qing-Wen Wang
{"title":"结构保留四元双共轭梯度法","authors":"Tao Li, Qing-Wen Wang","doi":"10.1137/23m1547299","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 306-326, March 2024. <br/> Abstract. This paper considers a novel structure-preserving method for solving non-Hermitian quaternion linear systems arising from color image deblurred problems. From the quaternion Lanczos biorthogonalization procedure that preserves the quaternion tridiagonal form at each iteration, we derive the quaternion biconjugate gradient method for solving the linear systems and then establish the convergence analysis of the proposed algorithm. Finally, we provide some numerical examples to illustrate the feasibility and validity of our method in comparison with the QGMRES, especially in terms of computing time.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"123 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Preserving Quaternion Biconjugate Gradient Method\",\"authors\":\"Tao Li, Qing-Wen Wang\",\"doi\":\"10.1137/23m1547299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 306-326, March 2024. <br/> Abstract. This paper considers a novel structure-preserving method for solving non-Hermitian quaternion linear systems arising from color image deblurred problems. From the quaternion Lanczos biorthogonalization procedure that preserves the quaternion tridiagonal form at each iteration, we derive the quaternion biconjugate gradient method for solving the linear systems and then establish the convergence analysis of the proposed algorithm. Finally, we provide some numerical examples to illustrate the feasibility and validity of our method in comparison with the QGMRES, especially in terms of computing time.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1547299\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1547299","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 1 期,第 306-326 页,2024 年 3 月。 摘要本文研究了一种新颖的结构保留方法,用于求解彩色图像去模糊问题中产生的非赫米四元线性系统。从每次迭代都保留四元数三边形的四元数 Lanczos 双正交化过程出发,我们推导出求解线性系统的四元数双共轭梯度法,然后建立了所提算法的收敛性分析。最后,我们提供了一些数值示例来说明我们的方法与 QGMRES 相比的可行性和有效性,特别是在计算时间方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Preserving Quaternion Biconjugate Gradient Method
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 306-326, March 2024.
Abstract. This paper considers a novel structure-preserving method for solving non-Hermitian quaternion linear systems arising from color image deblurred problems. From the quaternion Lanczos biorthogonalization procedure that preserves the quaternion tridiagonal form at each iteration, we derive the quaternion biconjugate gradient method for solving the linear systems and then establish the convergence analysis of the proposed algorithm. Finally, we provide some numerical examples to illustrate the feasibility and validity of our method in comparison with the QGMRES, especially in terms of computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信