{"title":"基于多时极坐标合成孔径雷达和光学遥感数据的高山草甸地区土壤含水量协同反演","authors":"Meng Kong, Xiaoqing Zuo, Yongfa Li","doi":"10.1155/2024/2585610","DOIUrl":null,"url":null,"abstract":"Soil water content is a critical environmental parameter in research and practice, though various technological and contextual constraints limit its estimation in arid areas with vegetation cover. This study combined the multitemporal remote sensing data of Sentinel-1 and Landsat 8 to conduct an inversion study on surface soil water content under low vegetation cover in Nagqu, central Tibetan Plateau. Four vegetation indices (NDVI, ARVI, EVI, and RVI) were extracted from optical remote sensing data. A water cloud model was used to eliminate the influence of the vegetation layer on the backscattering coefficient associated with vegetation cover, and a predictive model suitable for the Nagqu area was constructed. The water cloud model effectively incorporated a vegetation index instead of vegetation water content. We found that VV polarization was more suitable for soil water content inversion than VH polarization. Among the four vegetation indices, the soil water content inversion model constructed with RVI under VV polarization had the best fit (<i>R</i><sup>2</sup> = 0.8212; RMSE = 6.30). The second-best fit was observed for vegetation water content-NDVI (<i>R</i><sup>2</sup> = 0.8201). The soil water content inversion models all had an <i>R</i><sup>2</sup> > 0.6, regardless of the vegetation index used, though the RVI had the best fitting effect, indicating that this vegetation index is highly applicable in the water cloud model, as a substitute for vegetation water content, and is expected to perform well in similar study sites.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"99 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Inversion of Soil Water Content in Alpine Meadow Area Based on Multitemporal Polarimetric SAR and Optical Remote Sensing Data\",\"authors\":\"Meng Kong, Xiaoqing Zuo, Yongfa Li\",\"doi\":\"10.1155/2024/2585610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil water content is a critical environmental parameter in research and practice, though various technological and contextual constraints limit its estimation in arid areas with vegetation cover. This study combined the multitemporal remote sensing data of Sentinel-1 and Landsat 8 to conduct an inversion study on surface soil water content under low vegetation cover in Nagqu, central Tibetan Plateau. Four vegetation indices (NDVI, ARVI, EVI, and RVI) were extracted from optical remote sensing data. A water cloud model was used to eliminate the influence of the vegetation layer on the backscattering coefficient associated with vegetation cover, and a predictive model suitable for the Nagqu area was constructed. The water cloud model effectively incorporated a vegetation index instead of vegetation water content. We found that VV polarization was more suitable for soil water content inversion than VH polarization. Among the four vegetation indices, the soil water content inversion model constructed with RVI under VV polarization had the best fit (<i>R</i><sup>2</sup> = 0.8212; RMSE = 6.30). The second-best fit was observed for vegetation water content-NDVI (<i>R</i><sup>2</sup> = 0.8201). The soil water content inversion models all had an <i>R</i><sup>2</sup> > 0.6, regardless of the vegetation index used, though the RVI had the best fitting effect, indicating that this vegetation index is highly applicable in the water cloud model, as a substitute for vegetation water content, and is expected to perform well in similar study sites.\",\"PeriodicalId\":17079,\"journal\":{\"name\":\"Journal of Spectroscopy\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2585610\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/2585610","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Collaborative Inversion of Soil Water Content in Alpine Meadow Area Based on Multitemporal Polarimetric SAR and Optical Remote Sensing Data
Soil water content is a critical environmental parameter in research and practice, though various technological and contextual constraints limit its estimation in arid areas with vegetation cover. This study combined the multitemporal remote sensing data of Sentinel-1 and Landsat 8 to conduct an inversion study on surface soil water content under low vegetation cover in Nagqu, central Tibetan Plateau. Four vegetation indices (NDVI, ARVI, EVI, and RVI) were extracted from optical remote sensing data. A water cloud model was used to eliminate the influence of the vegetation layer on the backscattering coefficient associated with vegetation cover, and a predictive model suitable for the Nagqu area was constructed. The water cloud model effectively incorporated a vegetation index instead of vegetation water content. We found that VV polarization was more suitable for soil water content inversion than VH polarization. Among the four vegetation indices, the soil water content inversion model constructed with RVI under VV polarization had the best fit (R2 = 0.8212; RMSE = 6.30). The second-best fit was observed for vegetation water content-NDVI (R2 = 0.8201). The soil water content inversion models all had an R2 > 0.6, regardless of the vegetation index used, though the RVI had the best fitting effect, indicating that this vegetation index is highly applicable in the water cloud model, as a substitute for vegetation water content, and is expected to perform well in similar study sites.
期刊介绍:
Journal of Spectroscopy (formerly titled Spectroscopy: An International Journal) is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of spectroscopy.