{"title":"PlasmoData.jl -- 以图表形式建模和分析复杂数据的 Julia 框架","authors":"David L Cole, Victor M Zavala","doi":"arxiv-2401.11404","DOIUrl":null,"url":null,"abstract":"Datasets encountered in scientific and engineering applications appear in\ncomplex formats (e.g., images, multivariate time series, molecules, video, text\nstrings, networks). Graph theory provides a unifying framework to model such\ndatasets and enables the use of powerful tools that can help analyze,\nvisualize, and extract value from data. In this work, we present PlasmoData.jl,\nan open-source, Julia framework that uses concepts of graph theory to\nfacilitate the modeling and analysis of complex datasets. The core of our\nframework is a general data modeling abstraction, which we call a DataGraph. We\nshow how the abstraction and software implementation can be used to represent\ndiverse data objects as graphs and to enable the use of tools from topology,\ngraph theory, and machine learning (e.g., graph neural networks) to conduct a\nvariety of tasks. We illustrate the versatility of the framework by using real\ndatasets: i) an image classification problem using topological data analysis to\nextract features from the graph model to train machine learning models; ii) a\ndisease outbreak problem where we model multivariate time series as graphs to\ndetect abnormal events; and iii) a technology pathway analysis problem where we\nhighlight how we can use graphs to navigate connectivity. Our discussion also\nhighlights how PlasmoData.jl leverages native Julia capabilities to enable\ncompact syntax, scalable computations, and interfaces with diverse packages.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PlasmoData.jl -- A Julia Framework for Modeling and Analyzing Complex Data as Graphs\",\"authors\":\"David L Cole, Victor M Zavala\",\"doi\":\"arxiv-2401.11404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Datasets encountered in scientific and engineering applications appear in\\ncomplex formats (e.g., images, multivariate time series, molecules, video, text\\nstrings, networks). Graph theory provides a unifying framework to model such\\ndatasets and enables the use of powerful tools that can help analyze,\\nvisualize, and extract value from data. In this work, we present PlasmoData.jl,\\nan open-source, Julia framework that uses concepts of graph theory to\\nfacilitate the modeling and analysis of complex datasets. The core of our\\nframework is a general data modeling abstraction, which we call a DataGraph. We\\nshow how the abstraction and software implementation can be used to represent\\ndiverse data objects as graphs and to enable the use of tools from topology,\\ngraph theory, and machine learning (e.g., graph neural networks) to conduct a\\nvariety of tasks. We illustrate the versatility of the framework by using real\\ndatasets: i) an image classification problem using topological data analysis to\\nextract features from the graph model to train machine learning models; ii) a\\ndisease outbreak problem where we model multivariate time series as graphs to\\ndetect abnormal events; and iii) a technology pathway analysis problem where we\\nhighlight how we can use graphs to navigate connectivity. Our discussion also\\nhighlights how PlasmoData.jl leverages native Julia capabilities to enable\\ncompact syntax, scalable computations, and interfaces with diverse packages.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.11404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
科学和工程应用中遇到的数据集格式复杂(如图像、多变量时间序列、分子、视频、文本串、网络)。图论为此类数据集的建模提供了一个统一的框架,使人们能够使用强大的工具来帮助分析、可视化数据并从中提取价值。在这项工作中,我们介绍了 PlasmoData.jl,这是一个开源的 Julia 框架,它使用图论的概念来促进复杂数据集的建模和分析。我们框架的核心是一个通用的数据建模抽象,我们称之为数据图(DataGraph)。我们展示了如何利用该抽象和软件实现将各种数据对象表示为图,并利用拓扑学、图论和机器学习(如图神经网络)工具来完成各种任务。我们通过使用真实数据集来说明该框架的多功能性:i) 图像分类问题,使用拓扑数据分析从图模型中提取特征来训练机器学习模型;ii) 疾病爆发问题,我们将多变量时间序列建模为图来检测异常事件;iii) 技术路径分析问题,我们强调了如何使用图来导航连接性。我们的讨论还强调了 PlasmoData.jl 如何利用原生的 Julia 功能来实现紧凑的语法、可扩展的计算以及与不同软件包的接口。
PlasmoData.jl -- A Julia Framework for Modeling and Analyzing Complex Data as Graphs
Datasets encountered in scientific and engineering applications appear in
complex formats (e.g., images, multivariate time series, molecules, video, text
strings, networks). Graph theory provides a unifying framework to model such
datasets and enables the use of powerful tools that can help analyze,
visualize, and extract value from data. In this work, we present PlasmoData.jl,
an open-source, Julia framework that uses concepts of graph theory to
facilitate the modeling and analysis of complex datasets. The core of our
framework is a general data modeling abstraction, which we call a DataGraph. We
show how the abstraction and software implementation can be used to represent
diverse data objects as graphs and to enable the use of tools from topology,
graph theory, and machine learning (e.g., graph neural networks) to conduct a
variety of tasks. We illustrate the versatility of the framework by using real
datasets: i) an image classification problem using topological data analysis to
extract features from the graph model to train machine learning models; ii) a
disease outbreak problem where we model multivariate time series as graphs to
detect abnormal events; and iii) a technology pathway analysis problem where we
highlight how we can use graphs to navigate connectivity. Our discussion also
highlights how PlasmoData.jl leverages native Julia capabilities to enable
compact syntax, scalable computations, and interfaces with diverse packages.