{"title":"基于变异模式分解和卷积门控递归单元的心电图预测","authors":"HongBo Wang, YiZhe Wang, Yu Liu, YueJuan Yao","doi":"10.1186/s13634-024-01113-7","DOIUrl":null,"url":null,"abstract":"<p>Electrocardiogram (ECG) prediction is highly important for detecting and storing heart signals and identifying potential health hazards. To improve the duration and accuracy of ECG prediction on the basis of noise filtering, a new algorithm based on variational mode decomposition (VMD) and a convolutional gated recurrent unit (ConvGRU) was proposed, named VMD-ConvGRU. VMD can directly remove noise, such as baseline drift noise, without manual intervention, greatly improving the model usability, and its combination with ConvGRU improves the prediction time and accuracy. The proposed algorithm was compared with three related algorithms (PSR-NN, VMD-NN and TS fuzzy) on MIT-BIH, an internationally recognized arrhythmia database. The experiments showed that the VMD-ConvGRU algorithm not only achieves better prediction accuracy than that of the other three algorithms but also has a considerable advantage in terms of prediction time. In addition, prediction experiments on both the MIT-BIH and European ST-T databases have shown that the VMD-ConvGRU algorithm has better generalizability than the other methods.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"65 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocardiogram prediction based on variational mode decomposition and a convolutional gated recurrent unit\",\"authors\":\"HongBo Wang, YiZhe Wang, Yu Liu, YueJuan Yao\",\"doi\":\"10.1186/s13634-024-01113-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocardiogram (ECG) prediction is highly important for detecting and storing heart signals and identifying potential health hazards. To improve the duration and accuracy of ECG prediction on the basis of noise filtering, a new algorithm based on variational mode decomposition (VMD) and a convolutional gated recurrent unit (ConvGRU) was proposed, named VMD-ConvGRU. VMD can directly remove noise, such as baseline drift noise, without manual intervention, greatly improving the model usability, and its combination with ConvGRU improves the prediction time and accuracy. The proposed algorithm was compared with three related algorithms (PSR-NN, VMD-NN and TS fuzzy) on MIT-BIH, an internationally recognized arrhythmia database. The experiments showed that the VMD-ConvGRU algorithm not only achieves better prediction accuracy than that of the other three algorithms but also has a considerable advantage in terms of prediction time. In addition, prediction experiments on both the MIT-BIH and European ST-T databases have shown that the VMD-ConvGRU algorithm has better generalizability than the other methods.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01113-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01113-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Electrocardiogram prediction based on variational mode decomposition and a convolutional gated recurrent unit
Electrocardiogram (ECG) prediction is highly important for detecting and storing heart signals and identifying potential health hazards. To improve the duration and accuracy of ECG prediction on the basis of noise filtering, a new algorithm based on variational mode decomposition (VMD) and a convolutional gated recurrent unit (ConvGRU) was proposed, named VMD-ConvGRU. VMD can directly remove noise, such as baseline drift noise, without manual intervention, greatly improving the model usability, and its combination with ConvGRU improves the prediction time and accuracy. The proposed algorithm was compared with three related algorithms (PSR-NN, VMD-NN and TS fuzzy) on MIT-BIH, an internationally recognized arrhythmia database. The experiments showed that the VMD-ConvGRU algorithm not only achieves better prediction accuracy than that of the other three algorithms but also has a considerable advantage in terms of prediction time. In addition, prediction experiments on both the MIT-BIH and European ST-T databases have shown that the VMD-ConvGRU algorithm has better generalizability than the other methods.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.