{"title":"从包含扩展数据缺口的缺失样本数据中无偏估计协方差函数和功率谱密度","authors":"Nils Damaschke, Volker Kühn, Holger Nobach","doi":"10.1186/s13634-024-01108-4","DOIUrl":null,"url":null,"abstract":"<p>Nonparametric estimation of the covariance function and the power spectral density of uniformly spaced data from stationary stochastic processes with missing samples is investigated. Several common methods are tested for their systematic and random errors under the condition of variations in the distribution of the missing samples. In addition to random and independent outliers, the influence of longer and hence correlated data gaps on the performance of the various estimators is also investigated. The aim is to construct a bias-free estimation routine for the covariance function and the power spectral density from stationary stochastic processes under the condition of missing samples with an optimum use of the available information in terms of low estimation variance and mean square error, and that independent of the spectral composition of the data gaps. The proposed procedure is a combination of three methods that allow bias-free estimation of the desired statistical functions with efficient use of the available information: weighted averaging over valid samples, derivation of the covariance estimate for the entire data set and restriction of the domain of the covariance function in a post-processing step, and appropriate correction of the covariance estimate after removal of the estimated mean value. The procedures abstain from interpolation of missing samples as well as block subdivision. Spectral estimates are obtained from covariance functions and vice versa using Wiener–Khinchin’s theorem.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias-free estimation of the covariance function and the power spectral density from data with missing samples including extended data gaps\",\"authors\":\"Nils Damaschke, Volker Kühn, Holger Nobach\",\"doi\":\"10.1186/s13634-024-01108-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonparametric estimation of the covariance function and the power spectral density of uniformly spaced data from stationary stochastic processes with missing samples is investigated. Several common methods are tested for their systematic and random errors under the condition of variations in the distribution of the missing samples. In addition to random and independent outliers, the influence of longer and hence correlated data gaps on the performance of the various estimators is also investigated. The aim is to construct a bias-free estimation routine for the covariance function and the power spectral density from stationary stochastic processes under the condition of missing samples with an optimum use of the available information in terms of low estimation variance and mean square error, and that independent of the spectral composition of the data gaps. The proposed procedure is a combination of three methods that allow bias-free estimation of the desired statistical functions with efficient use of the available information: weighted averaging over valid samples, derivation of the covariance estimate for the entire data set and restriction of the domain of the covariance function in a post-processing step, and appropriate correction of the covariance estimate after removal of the estimated mean value. The procedures abstain from interpolation of missing samples as well as block subdivision. Spectral estimates are obtained from covariance functions and vice versa using Wiener–Khinchin’s theorem.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01108-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01108-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Bias-free estimation of the covariance function and the power spectral density from data with missing samples including extended data gaps
Nonparametric estimation of the covariance function and the power spectral density of uniformly spaced data from stationary stochastic processes with missing samples is investigated. Several common methods are tested for their systematic and random errors under the condition of variations in the distribution of the missing samples. In addition to random and independent outliers, the influence of longer and hence correlated data gaps on the performance of the various estimators is also investigated. The aim is to construct a bias-free estimation routine for the covariance function and the power spectral density from stationary stochastic processes under the condition of missing samples with an optimum use of the available information in terms of low estimation variance and mean square error, and that independent of the spectral composition of the data gaps. The proposed procedure is a combination of three methods that allow bias-free estimation of the desired statistical functions with efficient use of the available information: weighted averaging over valid samples, derivation of the covariance estimate for the entire data set and restriction of the domain of the covariance function in a post-processing step, and appropriate correction of the covariance estimate after removal of the estimated mean value. The procedures abstain from interpolation of missing samples as well as block subdivision. Spectral estimates are obtained from covariance functions and vice versa using Wiener–Khinchin’s theorem.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.