Sibel Kurt Toplu, Talha Arikan, Pinar AydoğDu, OğUz Yayla
{"title":"论对称里德-穆勒码不变的群组","authors":"Sibel Kurt Toplu, Talha Arikan, Pinar AydoğDu, OğUz Yayla","doi":"arxiv-2401.11496","DOIUrl":null,"url":null,"abstract":"The Reed-Muller codes are a family of error-correcting codes that have been\nwidely studied in coding theory. In 2020, Wei Yan and Sian-Jheng Lin introduced\na variant of Reed-Muller codes so called symmetric Reed-Muller codes. We\ninvestigate linear maps of the automorphism group of symmetric Reed-Muller\ncodes and show that the set of these linear maps forms a subgroup of the\ngeneral linear group, which is the automorphism group of punctured Reed-Muller\ncodes. We provide a method to determine all the automorphisms in this subgroup\nexplicitly for some special cases.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Group Under Which Symmetric Reed-Muller Codes are Invariant\",\"authors\":\"Sibel Kurt Toplu, Talha Arikan, Pinar AydoğDu, OğUz Yayla\",\"doi\":\"arxiv-2401.11496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Reed-Muller codes are a family of error-correcting codes that have been\\nwidely studied in coding theory. In 2020, Wei Yan and Sian-Jheng Lin introduced\\na variant of Reed-Muller codes so called symmetric Reed-Muller codes. We\\ninvestigate linear maps of the automorphism group of symmetric Reed-Muller\\ncodes and show that the set of these linear maps forms a subgroup of the\\ngeneral linear group, which is the automorphism group of punctured Reed-Muller\\ncodes. We provide a method to determine all the automorphisms in this subgroup\\nexplicitly for some special cases.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.11496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
里德-穆勒码是编码理论中被广泛研究的纠错码系列。2020 年,Wei Yan 和 Sian-Jheng Lin 提出了 Reed-Muller 码的一种变体,称为对称 Reed-Muller 码。我们研究了对称里德-穆勒码自形群的线性映射,并证明这些线性映射的集合构成了一般线性群的一个子群,而一般线性群是穿刺里德-穆勒码的自形群。我们提供了一种方法,可以在某些特殊情况下明确确定这个子群中的所有自变群。
On a Group Under Which Symmetric Reed-Muller Codes are Invariant
The Reed-Muller codes are a family of error-correcting codes that have been
widely studied in coding theory. In 2020, Wei Yan and Sian-Jheng Lin introduced
a variant of Reed-Muller codes so called symmetric Reed-Muller codes. We
investigate linear maps of the automorphism group of symmetric Reed-Muller
codes and show that the set of these linear maps forms a subgroup of the
general linear group, which is the automorphism group of punctured Reed-Muller
codes. We provide a method to determine all the automorphisms in this subgroup
explicitly for some special cases.