人工智能辅助区块链智能安全电子处方管理框架

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Siva Sai, Vinay Chamola
{"title":"人工智能辅助区块链智能安全电子处方管理框架","authors":"Siva Sai, Vinay Chamola","doi":"10.1145/3641279","DOIUrl":null,"url":null,"abstract":"<p>Traditional medical prescriptions based on physical paper-based documents are prone to manipulation, errors, and unauthorized reproduction due to their format. Addressing the limitations of the traditional prescription system, e-prescription systems have been introduced in several countries. However, e-prescription systems lead to several concerns like the risk of privacy loss, the problem of double-spending prescriptions, lack of interoperability, and single point of failure, all of which need to be addressed immediately. We propose an AI-assisted blockchain-enabled smart and secure e-prescription management framework to address these issues. Our proposed system overcomes the problems of the centralized e-prescription systems and enables efficient consent management to access prescriptions by incorporating blockchain-based smart contracts. Our work incorporates the Umbral proxy re-encryption scheme in the proposed system, avoiding the need for repeated encryption and decryption of the prescriptions when transferred between different entities in the network. In our work, we employ two different machine learning models(Random Forest classifier and LightGBM classifier) to assist the doctor in prescribing medicines. One is a drug recommendation model, which is aimed at providing drug recommendations considering the medical history of the patients and the general prescription pattern for the particular ailment of the patient. We have fine-tuned the SciBERT model for adverse drug reaction detection. The extensive experimentation and results show that the proposed e-prescription framework is secure, scalable, and interoperable. Further, the proposed machine learning models produce results higher than 95%.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted Blockchain-enabled Smart and Secure E-prescription Management Framework\",\"authors\":\"Siva Sai, Vinay Chamola\",\"doi\":\"10.1145/3641279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional medical prescriptions based on physical paper-based documents are prone to manipulation, errors, and unauthorized reproduction due to their format. Addressing the limitations of the traditional prescription system, e-prescription systems have been introduced in several countries. However, e-prescription systems lead to several concerns like the risk of privacy loss, the problem of double-spending prescriptions, lack of interoperability, and single point of failure, all of which need to be addressed immediately. We propose an AI-assisted blockchain-enabled smart and secure e-prescription management framework to address these issues. Our proposed system overcomes the problems of the centralized e-prescription systems and enables efficient consent management to access prescriptions by incorporating blockchain-based smart contracts. Our work incorporates the Umbral proxy re-encryption scheme in the proposed system, avoiding the need for repeated encryption and decryption of the prescriptions when transferred between different entities in the network. In our work, we employ two different machine learning models(Random Forest classifier and LightGBM classifier) to assist the doctor in prescribing medicines. One is a drug recommendation model, which is aimed at providing drug recommendations considering the medical history of the patients and the general prescription pattern for the particular ailment of the patient. We have fine-tuned the SciBERT model for adverse drug reaction detection. The extensive experimentation and results show that the proposed e-prescription framework is secure, scalable, and interoperable. Further, the proposed machine learning models produce results higher than 95%.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641279\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641279","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传统的医疗处方以实体纸质文件为基础,由于其格式问题,容易出现篡改、错误和未经授权的复制。针对传统处方系统的局限性,一些国家引入了电子处方系统。然而,电子处方系统会导致一些问题,如隐私泄露的风险、重复花费处方的问题、缺乏互操作性以及单点故障,所有这些问题都需要立即解决。为了解决这些问题,我们提出了一个人工智能辅助的区块链智能安全电子处方管理框架。我们提出的系统克服了集中式电子处方系统存在的问题,并通过结合基于区块链的智能合约,实现了高效的同意管理,以获取处方。我们的工作将 Umbral 代理重加密方案纳入了拟议系统,避免了在网络中不同实体之间传输处方时重复加密和解密的需要。在我们的工作中,我们采用了两种不同的机器学习模型(随机森林分类器和 LightGBM 分类器)来协助医生开药。其中一个是药物推荐模型,旨在根据患者的病史和针对患者特定疾病的一般处方模式提供药物推荐。我们对用于药物不良反应检测的 SciBERT 模型进行了微调。大量实验和结果表明,建议的电子处方框架是安全、可扩展和可互操作的。此外,所提出的机器学习模型的结果高于 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-assisted Blockchain-enabled Smart and Secure E-prescription Management Framework

Traditional medical prescriptions based on physical paper-based documents are prone to manipulation, errors, and unauthorized reproduction due to their format. Addressing the limitations of the traditional prescription system, e-prescription systems have been introduced in several countries. However, e-prescription systems lead to several concerns like the risk of privacy loss, the problem of double-spending prescriptions, lack of interoperability, and single point of failure, all of which need to be addressed immediately. We propose an AI-assisted blockchain-enabled smart and secure e-prescription management framework to address these issues. Our proposed system overcomes the problems of the centralized e-prescription systems and enables efficient consent management to access prescriptions by incorporating blockchain-based smart contracts. Our work incorporates the Umbral proxy re-encryption scheme in the proposed system, avoiding the need for repeated encryption and decryption of the prescriptions when transferred between different entities in the network. In our work, we employ two different machine learning models(Random Forest classifier and LightGBM classifier) to assist the doctor in prescribing medicines. One is a drug recommendation model, which is aimed at providing drug recommendations considering the medical history of the patients and the general prescription pattern for the particular ailment of the patient. We have fine-tuned the SciBERT model for adverse drug reaction detection. The extensive experimentation and results show that the proposed e-prescription framework is secure, scalable, and interoperable. Further, the proposed machine learning models produce results higher than 95%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Internet Technology
ACM Transactions on Internet Technology 工程技术-计算机:软件工程
CiteScore
10.30
自引率
1.90%
发文量
137
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信