Michael Haugeneder, Michael Lehning, Ivana Stiperski, Dylan Reynolds, Rebecca Mott
{"title":"成片积雪上强异质近地表边界层中的湍流","authors":"Michael Haugeneder, Michael Lehning, Ivana Stiperski, Dylan Reynolds, Rebecca Mott","doi":"10.1007/s10546-023-00856-4","DOIUrl":null,"url":null,"abstract":"<p>The near-surface boundary layer above patchy snow cover in mountainous terrain is characterized by a highly complex interplay of various flows on multiple scales. In this study, we present data from a comprehensive field campaign that cover a period of 21 days of the ablation season in an alpine valley, from continuous snow cover until complete melt out. We recorded near-surface eddy covariance data at different heights and investigated spectral decompositions. The topographic setting led to the categorisation of flows into up and down valley flows, with a down valley Föhn event in the middle of the observation period. Our findings reveal that the snow cover fraction is a major driver for the structure and dynamics of the atmospheric layer adjacent to the snow surface. With bare ground emerging, stable internal boundary layers (SIBL) developed over the snow. As the snow coverage decreased, the depth of the SIBL decreased below 1 m and spectra of air temperature variance showed a transition towards turbulent time scales, which were caused by the intermittent advection of shallow plumes of warm air over the snow surface. The intermittent advection could also be observed visually with high spatio-temporal resolution measurements using a thermal infrared camera. While the shallow advection only affected the lowest measurement level at 0.3 m, the measurements above at 1 m, 2 m, and 3 m indicate that the distribution of eddy size and, thus, the turbulence structure, did not distinctly change with height.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence in the Strongly Heterogeneous Near-Surface Boundary Layer over Patchy Snow\",\"authors\":\"Michael Haugeneder, Michael Lehning, Ivana Stiperski, Dylan Reynolds, Rebecca Mott\",\"doi\":\"10.1007/s10546-023-00856-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The near-surface boundary layer above patchy snow cover in mountainous terrain is characterized by a highly complex interplay of various flows on multiple scales. In this study, we present data from a comprehensive field campaign that cover a period of 21 days of the ablation season in an alpine valley, from continuous snow cover until complete melt out. We recorded near-surface eddy covariance data at different heights and investigated spectral decompositions. The topographic setting led to the categorisation of flows into up and down valley flows, with a down valley Föhn event in the middle of the observation period. Our findings reveal that the snow cover fraction is a major driver for the structure and dynamics of the atmospheric layer adjacent to the snow surface. With bare ground emerging, stable internal boundary layers (SIBL) developed over the snow. As the snow coverage decreased, the depth of the SIBL decreased below 1 m and spectra of air temperature variance showed a transition towards turbulent time scales, which were caused by the intermittent advection of shallow plumes of warm air over the snow surface. The intermittent advection could also be observed visually with high spatio-temporal resolution measurements using a thermal infrared camera. While the shallow advection only affected the lowest measurement level at 0.3 m, the measurements above at 1 m, 2 m, and 3 m indicate that the distribution of eddy size and, thus, the turbulence structure, did not distinctly change with height.</p>\",\"PeriodicalId\":9153,\"journal\":{\"name\":\"Boundary-Layer Meteorology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary-Layer Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10546-023-00856-4\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10546-023-00856-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Turbulence in the Strongly Heterogeneous Near-Surface Boundary Layer over Patchy Snow
The near-surface boundary layer above patchy snow cover in mountainous terrain is characterized by a highly complex interplay of various flows on multiple scales. In this study, we present data from a comprehensive field campaign that cover a period of 21 days of the ablation season in an alpine valley, from continuous snow cover until complete melt out. We recorded near-surface eddy covariance data at different heights and investigated spectral decompositions. The topographic setting led to the categorisation of flows into up and down valley flows, with a down valley Föhn event in the middle of the observation period. Our findings reveal that the snow cover fraction is a major driver for the structure and dynamics of the atmospheric layer adjacent to the snow surface. With bare ground emerging, stable internal boundary layers (SIBL) developed over the snow. As the snow coverage decreased, the depth of the SIBL decreased below 1 m and spectra of air temperature variance showed a transition towards turbulent time scales, which were caused by the intermittent advection of shallow plumes of warm air over the snow surface. The intermittent advection could also be observed visually with high spatio-temporal resolution measurements using a thermal infrared camera. While the shallow advection only affected the lowest measurement level at 0.3 m, the measurements above at 1 m, 2 m, and 3 m indicate that the distribution of eddy size and, thus, the turbulence structure, did not distinctly change with height.
期刊介绍:
Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.