用奇异频谱分析法渐近分离谐波

IF 0.4 Q4 MATHEMATICS
{"title":"用奇异频谱分析法渐近分离谐波","authors":"","doi":"10.1134/s1063454123040118","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>The paper is devoted to studying the sufficient conditions for the asymptotical separability of distinct terms in the linear combination of harmonics by singular spectrum analysis (SSA). Namely, the series <em>x</em><sub>0</sub>, …, <span> <span>\\({{x}_{{N - 1}}}\\)</span> </span> with <em>x</em><sub><em>n</em></sub> = <span> <span>\\(\\sum\\nolimits_{i = 1}^r {{{f}_{{i,n}}}} \\)</span> </span>, where <span> <span>\\({{f}_{{i,n}}}\\)</span> </span> = <span> <span>\\({{b}_{i}}\\cos ({{\\omega }_{i}}n + {{\\gamma }_{i}})\\)</span> </span> and both amplitudes |<em>b</em><sub><em>i</em></sub>| and frequencies ω<sub><em>i</em></sub> ∈ (0, 1/2) are pairwise different, are considered. Then, as is proved in this study, under some relationship between amplitudes |<em>b</em><sub><em>i</em></sub>| and the choice of standard SSA parameters, the so-called reconstructed values <span> <span>\\({{\\tilde {f}}_{{i,n}}}\\)</span> </span> prove to be very close to <span> <span>\\({{f}_{{i,n}}}\\)</span> </span> for large <em>N</em>. Moreover, <span> <span>\\({{\\max }_{n}}\\left( {\\left| {{{{\\tilde {f}}}_{{i,n}}} - {{f}_{{i,n}}}} \\right|} \\right)\\)</span> </span> = <span> <span>\\(O({{N}^{{ - 1}}})\\)</span> </span> for any <em>i</em>, if <em>N</em> → ∞.</p> </span>","PeriodicalId":43418,"journal":{"name":"Vestnik St Petersburg University-Mathematics","volume":"118 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotical Separation of Harmonics by Singular Spectrum Analysis\",\"authors\":\"\",\"doi\":\"10.1134/s1063454123040118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>The paper is devoted to studying the sufficient conditions for the asymptotical separability of distinct terms in the linear combination of harmonics by singular spectrum analysis (SSA). Namely, the series <em>x</em><sub>0</sub>, …, <span> <span>\\\\({{x}_{{N - 1}}}\\\\)</span> </span> with <em>x</em><sub><em>n</em></sub> = <span> <span>\\\\(\\\\sum\\\\nolimits_{i = 1}^r {{{f}_{{i,n}}}} \\\\)</span> </span>, where <span> <span>\\\\({{f}_{{i,n}}}\\\\)</span> </span> = <span> <span>\\\\({{b}_{i}}\\\\cos ({{\\\\omega }_{i}}n + {{\\\\gamma }_{i}})\\\\)</span> </span> and both amplitudes |<em>b</em><sub><em>i</em></sub>| and frequencies ω<sub><em>i</em></sub> ∈ (0, 1/2) are pairwise different, are considered. Then, as is proved in this study, under some relationship between amplitudes |<em>b</em><sub><em>i</em></sub>| and the choice of standard SSA parameters, the so-called reconstructed values <span> <span>\\\\({{\\\\tilde {f}}_{{i,n}}}\\\\)</span> </span> prove to be very close to <span> <span>\\\\({{f}_{{i,n}}}\\\\)</span> </span> for large <em>N</em>. Moreover, <span> <span>\\\\({{\\\\max }_{n}}\\\\left( {\\\\left| {{{{\\\\tilde {f}}}_{{i,n}}} - {{f}_{{i,n}}}} \\\\right|} \\\\right)\\\\)</span> </span> = <span> <span>\\\\(O({{N}^{{ - 1}}})\\\\)</span> </span> for any <em>i</em>, if <em>N</em> → ∞.</p> </span>\",\"PeriodicalId\":43418,\"journal\":{\"name\":\"Vestnik St Petersburg University-Mathematics\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik St Petersburg University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063454123040118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik St Petersburg University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063454123040118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文致力于通过奇异谱分析(SSA)研究谐波线性组合中不同项渐近可分性的充分条件。即,数列 x0, ..., \({{x}_{{N - 1}}}) with xn = \(\sum\nolimits_{i = 1}^r {{f}_{i,n}}}} \) , 其中 \({{f}_{i、n}}}\) = {{b}_{i}}cos ({{\omega }_{i}}n + {{\gamma }_{i}})\),并且振幅 |bi| 和频率 ωi∈ (0, 1/2) 是成对不同的。然后,正如本研究中所证明的,在振幅 |bi| 和标准 SSA 参数选择之间的某种关系下,所谓的重建值 \({{\tilde {f}}_{{i,n}}}\) 在大 N 条件下非常接近 \({{f}_{i,n}}}\)。此外,如果 N → ∞,对于任意 i,\({{max }_{n}}left( {\left| {{{{\tilde {f}}}_{{i,n}}} - {{f}_{{i,n}}}} \right|} \right)\) =\(O({{N}^{{ - 1}})}})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotical Separation of Harmonics by Singular Spectrum Analysis

Abstract

The paper is devoted to studying the sufficient conditions for the asymptotical separability of distinct terms in the linear combination of harmonics by singular spectrum analysis (SSA). Namely, the series x0, …, \({{x}_{{N - 1}}}\) with xn = \(\sum\nolimits_{i = 1}^r {{{f}_{{i,n}}}} \) , where \({{f}_{{i,n}}}\) = \({{b}_{i}}\cos ({{\omega }_{i}}n + {{\gamma }_{i}})\) and both amplitudes |bi| and frequencies ωi ∈ (0, 1/2) are pairwise different, are considered. Then, as is proved in this study, under some relationship between amplitudes |bi| and the choice of standard SSA parameters, the so-called reconstructed values \({{\tilde {f}}_{{i,n}}}\) prove to be very close to \({{f}_{{i,n}}}\) for large N. Moreover, \({{\max }_{n}}\left( {\left| {{{{\tilde {f}}}_{{i,n}}} - {{f}_{{i,n}}}} \right|} \right)\) \(O({{N}^{{ - 1}}})\) for any i, if N → ∞.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
50.00%
发文量
44
期刊介绍: Vestnik St. Petersburg University, Mathematics  is a journal that publishes original contributions in all areas of fundamental and applied mathematics. It is the prime outlet for the findings of scientists from the Faculty of Mathematics and Mechanics of St. Petersburg State University. Articles of the journal cover the major areas of fundamental and applied mathematics. The following are the main subject headings: Mathematical Analysis; Higher Algebra and Numbers Theory; Higher Geometry; Differential Equations; Mathematical Physics; Computational Mathematics and Numerical Analysis; Statistical Simulation; Theoretical Cybernetics; Game Theory; Operations Research; Theory of Probability and Mathematical Statistics, and Mathematical Problems of Mechanics and Astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信