几乎全息摆运动问题中的超越效应

IF 0.4 Q4 MATHEMATICS
A. S. Kuleshov, I. I. Ulyatovskaya
{"title":"几乎全息摆运动问题中的超越效应","authors":"A. S. Kuleshov, I. I. Ulyatovskaya","doi":"10.1134/s1063454123040209","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In 1986, Ya.V. Tatarinov presented the basis of the theory of weakly nonholonomic systems. Mechanical systems with nonholonomic constraints depending on a small parameter are considered. It is assumed that when the value of this parameter is zero, the constraints of such a system become integrable; i.e., in this case, we have a family of holonomic systems depending on several arbitrary integration constants. We will assume that these holonomic systems are completely integrable Hamiltonian systems. When the small parameter is not zero, the behavior of such systems can be considered with the help of asymptotic methods representing their motion as a combination of the motion of a slightly modified holonomic system with slowly varying previous integration constants (the transgression effect). In this paper, we describe the transgression effect in the problem of motion of an almost holonomic pendulum.</p>","PeriodicalId":43418,"journal":{"name":"Vestnik St Petersburg University-Mathematics","volume":"10 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Transgression Effect in the Problem of Motion of an Almost Holonomic Pendulum\",\"authors\":\"A. S. Kuleshov, I. I. Ulyatovskaya\",\"doi\":\"10.1134/s1063454123040209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In 1986, Ya.V. Tatarinov presented the basis of the theory of weakly nonholonomic systems. Mechanical systems with nonholonomic constraints depending on a small parameter are considered. It is assumed that when the value of this parameter is zero, the constraints of such a system become integrable; i.e., in this case, we have a family of holonomic systems depending on several arbitrary integration constants. We will assume that these holonomic systems are completely integrable Hamiltonian systems. When the small parameter is not zero, the behavior of such systems can be considered with the help of asymptotic methods representing their motion as a combination of the motion of a slightly modified holonomic system with slowly varying previous integration constants (the transgression effect). In this paper, we describe the transgression effect in the problem of motion of an almost holonomic pendulum.</p>\",\"PeriodicalId\":43418,\"journal\":{\"name\":\"Vestnik St Petersburg University-Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik St Petersburg University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063454123040209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik St Petersburg University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063454123040209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 1986 年,Ya.V. Tatarinov 提出了弱非全局系统理论的基础。该理论考虑了具有取决于一个小参数的非全局约束的机械系统。假定当该参数值为零时,该系统的约束条件变得可积分;也就是说,在这种情况下,我们有一个取决于几个任意积分常数的全局系统族。我们将假设这些整体系统是完全可积分的哈密顿系统。当小参数不为零时,可以借助渐近方法来考虑这类系统的行为,将其运动表示为稍加修正的整体系统运动与缓慢变化的先前积分常数的组合(跃迁效应)。在本文中,我们将描述几乎全局摆运动问题中的跃迁效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Transgression Effect in the Problem of Motion of an Almost Holonomic Pendulum

Abstract

In 1986, Ya.V. Tatarinov presented the basis of the theory of weakly nonholonomic systems. Mechanical systems with nonholonomic constraints depending on a small parameter are considered. It is assumed that when the value of this parameter is zero, the constraints of such a system become integrable; i.e., in this case, we have a family of holonomic systems depending on several arbitrary integration constants. We will assume that these holonomic systems are completely integrable Hamiltonian systems. When the small parameter is not zero, the behavior of such systems can be considered with the help of asymptotic methods representing their motion as a combination of the motion of a slightly modified holonomic system with slowly varying previous integration constants (the transgression effect). In this paper, we describe the transgression effect in the problem of motion of an almost holonomic pendulum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
50.00%
发文量
44
期刊介绍: Vestnik St. Petersburg University, Mathematics  is a journal that publishes original contributions in all areas of fundamental and applied mathematics. It is the prime outlet for the findings of scientists from the Faculty of Mathematics and Mechanics of St. Petersburg State University. Articles of the journal cover the major areas of fundamental and applied mathematics. The following are the main subject headings: Mathematical Analysis; Higher Algebra and Numbers Theory; Higher Geometry; Differential Equations; Mathematical Physics; Computational Mathematics and Numerical Analysis; Statistical Simulation; Theoretical Cybernetics; Game Theory; Operations Research; Theory of Probability and Mathematical Statistics, and Mathematical Problems of Mechanics and Astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信