用于矢量优化的哈格-张共轭梯度法的替代扩展

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qingjie Hu, Liping Zhu, Yu Chen
{"title":"用于矢量优化的哈格-张共轭梯度法的替代扩展","authors":"Qingjie Hu, Liping Zhu, Yu Chen","doi":"10.1007/s10589-023-00548-2","DOIUrl":null,"url":null,"abstract":"<p>Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization\",\"authors\":\"Qingjie Hu, Liping Zhu, Yu Chen\",\"doi\":\"10.1007/s10589-023-00548-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00548-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00548-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,Gonçalves 和 Prudente 提出了针对矢量优化的 Hager-Zhang 非线性共轭梯度法的扩展方法(Comput Optim Appl 76:889-916, 2020)。他们初步证明,直接将 Hager-Zhang 方法扩展用于矢量优化,即使采用精确的线性搜索,也可能无法实现矢量意义上的下降。通过使用足够精确的直线搜索,他们随后引入了矢量意义上的自调整哈格-张共轭梯度法。这一新方案的全局收敛性已得到证明,无需定期重启或任何凸假设。在本文中,我们提出了哈格-张非线性共轭梯度法在矢量优化方面的另一种扩展,它保留了其理想的标量特性,即无需依赖任何线性搜索或凸性假设即可确保充分下降。此外,我们还研究了在温和的假设条件下,该方法与沃尔夫线性搜索的全局收敛性。最后,我们通过数值实验来说明我们提出的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization

Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization

Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信