{"title":"希格曼定理对更好的准命令更有力","authors":"Anton Freund","doi":"10.1007/s11083-024-09658-w","DOIUrl":null,"url":null,"abstract":"<p>We prove that Higman’s lemma is strictly stronger for better quasi orders than for well quasi orders, within the framework of reverse mathematics. In fact, we show a stronger result: the infinite Ramsey theorem (for tuples of all lengths) is equivalent to the statement that any array <span>\\([\\mathbb N]^{n+1}\\rightarrow \\mathbb N^n\\times X\\)</span> for a well order <i>X</i> and <span>\\(n\\in \\mathbb N\\)</span> is good, over the base theory <span>\\(\\mathsf {RCA_0}\\)</span>.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higman’s Lemma is Stronger for Better Quasi Orders\",\"authors\":\"Anton Freund\",\"doi\":\"10.1007/s11083-024-09658-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that Higman’s lemma is strictly stronger for better quasi orders than for well quasi orders, within the framework of reverse mathematics. In fact, we show a stronger result: the infinite Ramsey theorem (for tuples of all lengths) is equivalent to the statement that any array <span>\\\\([\\\\mathbb N]^{n+1}\\\\rightarrow \\\\mathbb N^n\\\\times X\\\\)</span> for a well order <i>X</i> and <span>\\\\(n\\\\in \\\\mathbb N\\\\)</span> is good, over the base theory <span>\\\\(\\\\mathsf {RCA_0}\\\\)</span>.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09658-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09658-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higman’s Lemma is Stronger for Better Quasi Orders
We prove that Higman’s lemma is strictly stronger for better quasi orders than for well quasi orders, within the framework of reverse mathematics. In fact, we show a stronger result: the infinite Ramsey theorem (for tuples of all lengths) is equivalent to the statement that any array \([\mathbb N]^{n+1}\rightarrow \mathbb N^n\times X\) for a well order X and \(n\in \mathbb N\) is good, over the base theory \(\mathsf {RCA_0}\).