希格曼定理对更好的准命令更有力

Order Pub Date : 2024-01-23 DOI:10.1007/s11083-024-09658-w
Anton Freund
{"title":"希格曼定理对更好的准命令更有力","authors":"Anton Freund","doi":"10.1007/s11083-024-09658-w","DOIUrl":null,"url":null,"abstract":"<p>We prove that Higman’s lemma is strictly stronger for better quasi orders than for well quasi orders, within the framework of reverse mathematics. In fact, we show a stronger result: the infinite Ramsey theorem (for tuples of all lengths) is equivalent to the statement that any array <span>\\([\\mathbb N]^{n+1}\\rightarrow \\mathbb N^n\\times X\\)</span> for a well order <i>X</i> and <span>\\(n\\in \\mathbb N\\)</span> is good, over the base theory <span>\\(\\mathsf {RCA_0}\\)</span>.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higman’s Lemma is Stronger for Better Quasi Orders\",\"authors\":\"Anton Freund\",\"doi\":\"10.1007/s11083-024-09658-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that Higman’s lemma is strictly stronger for better quasi orders than for well quasi orders, within the framework of reverse mathematics. In fact, we show a stronger result: the infinite Ramsey theorem (for tuples of all lengths) is equivalent to the statement that any array <span>\\\\([\\\\mathbb N]^{n+1}\\\\rightarrow \\\\mathbb N^n\\\\times X\\\\)</span> for a well order <i>X</i> and <span>\\\\(n\\\\in \\\\mathbb N\\\\)</span> is good, over the base theory <span>\\\\(\\\\mathsf {RCA_0}\\\\)</span>.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09658-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09658-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在逆向数学的框架内,我们证明了希格曼定理对于较好的准序比对于较好的准序严格地更强。事实上,我们证明了一个更强的结果:无限拉姆齐定理(对于所有长度的元组)等价于这样一个声明:对于一个井准阶X和(n(在井准阶中))的任何数组([\mathbb N]^{n+1}\rightarrow \mathbb N^n\times X\ )都是好的,在基础理论(\mathsf {RCA_0}\)之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higman’s Lemma is Stronger for Better Quasi Orders

We prove that Higman’s lemma is strictly stronger for better quasi orders than for well quasi orders, within the framework of reverse mathematics. In fact, we show a stronger result: the infinite Ramsey theorem (for tuples of all lengths) is equivalent to the statement that any array \([\mathbb N]^{n+1}\rightarrow \mathbb N^n\times X\) for a well order X and \(n\in \mathbb N\) is good, over the base theory \(\mathsf {RCA_0}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信