{"title":"通过地表部分匹配确定的地动脉冲及其对地震摇动后果的影响","authors":"Yuchuan Tang, Jiankang Wang, Gang Wu","doi":"10.1007/s11803-024-2226-z","DOIUrl":null,"url":null,"abstract":"<p>In seismology and earthquake engineering, it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions. To capture the pulses that dominate structural responses, this study establishes congruence and shift relationships between response spectrum surfaces. A similarity search between spectrum surfaces, supplemented with a similarity search in time series, has been applied to characterize the pulse-like features in pulse-type ground motions. The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions. Generally, the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence\",\"authors\":\"Yuchuan Tang, Jiankang Wang, Gang Wu\",\"doi\":\"10.1007/s11803-024-2226-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In seismology and earthquake engineering, it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions. To capture the pulses that dominate structural responses, this study establishes congruence and shift relationships between response spectrum surfaces. A similarity search between spectrum surfaces, supplemented with a similarity search in time series, has been applied to characterize the pulse-like features in pulse-type ground motions. The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions. Generally, the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2226-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2226-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence
In seismology and earthquake engineering, it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions. To capture the pulses that dominate structural responses, this study establishes congruence and shift relationships between response spectrum surfaces. A similarity search between spectrum surfaces, supplemented with a similarity search in time series, has been applied to characterize the pulse-like features in pulse-type ground motions. The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions. Generally, the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.
期刊介绍:
Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery.
The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.