论冯-诺依曼遍历定理中的谱量和收敛率

{"title":"论冯-诺依曼遍历定理中的谱量和收敛率","authors":"","doi":"10.1007/s00605-023-01928-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We show that the power-law decay exponents in von Neumann’s Ergodic Theorem (for discrete systems) are the pointwise scaling exponents of a spectral measure at the spectral value 1. In this work we also prove that, under an assumption of weak convergence, in the absence of a spectral gap, the convergence rates of the time-average in von Neumann’s Ergodic Theorem depend on sequences of time going to infinity.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On spectral measures and convergence rates in von Neumann’s Ergodic theorem\",\"authors\":\"\",\"doi\":\"10.1007/s00605-023-01928-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We show that the power-law decay exponents in von Neumann’s Ergodic Theorem (for discrete systems) are the pointwise scaling exponents of a spectral measure at the spectral value 1. In this work we also prove that, under an assumption of weak convergence, in the absence of a spectral gap, the convergence rates of the time-average in von Neumann’s Ergodic Theorem depend on sequences of time going to infinity.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01928-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01928-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们证明了 von Neumann Ergodic Theorem(针对离散系统)中的幂律衰减指数是光谱量在光谱值为 1 时的点式缩放指数。在这项工作中,我们还证明了在弱收敛的假设下,在没有谱差距的情况下,von Neumann Ergodic Theorem 中的时间平均值的收敛率取决于无穷大的时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spectral measures and convergence rates in von Neumann’s Ergodic theorem

Abstract

We show that the power-law decay exponents in von Neumann’s Ergodic Theorem (for discrete systems) are the pointwise scaling exponents of a spectral measure at the spectral value 1. In this work we also prove that, under an assumption of weak convergence, in the absence of a spectral gap, the convergence rates of the time-average in von Neumann’s Ergodic Theorem depend on sequences of time going to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信