卡马萨-霍尔姆方程零滤波极限解的非均匀收敛性

Jinlu Li, Yanghai Yu, Weipeng Zhu
{"title":"卡马萨-霍尔姆方程零滤波极限解的非均匀收敛性","authors":"Jinlu Li, Yanghai Yu, Weipeng Zhu","doi":"10.1007/s00605-023-01931-1","DOIUrl":null,"url":null,"abstract":"<p>In this short note, we prove that given initial data <span>\\(u_0\\in H^s(\\mathbb {R})\\)</span> with <span>\\(s&gt;\\frac{3}{2}\\)</span> and for some <span>\\(T&gt;0\\)</span>, the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in <span>\\(L^\\infty (0,T;H^s(\\mathbb {R}))\\)</span> to the inviscid Burgers equation as the filter parameter <span>\\(\\alpha \\)</span> tends to zero. This is a complement of our recent result on the zero-filter limit.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"41 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit\",\"authors\":\"Jinlu Li, Yanghai Yu, Weipeng Zhu\",\"doi\":\"10.1007/s00605-023-01931-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this short note, we prove that given initial data <span>\\\\(u_0\\\\in H^s(\\\\mathbb {R})\\\\)</span> with <span>\\\\(s&gt;\\\\frac{3}{2}\\\\)</span> and for some <span>\\\\(T&gt;0\\\\)</span>, the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in <span>\\\\(L^\\\\infty (0,T;H^s(\\\\mathbb {R}))\\\\)</span> to the inviscid Burgers equation as the filter parameter <span>\\\\(\\\\alpha \\\\)</span> tends to zero. This is a complement of our recent result on the zero-filter limit.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"41 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01931-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01931-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们证明了给定初始数据(u_0\in H^s(\mathbb {R}))与(s>\frac{3}{2}\)并且对于某个(T>;0)时,卡马萨-霍尔姆方程的解并不会随着滤波参数(\α \)趋于零而均匀地收敛于(L^\infty (0,T;H^s(\mathbb {R}))中的初始数据。这是对我们最近关于零滤波极限结果的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniform convergence of solution for the Camassa–Holm equation in the zero-filter limit

In this short note, we prove that given initial data \(u_0\in H^s(\mathbb {R})\) with \(s>\frac{3}{2}\) and for some \(T>0\), the solution of the Camassa-Holm equation does not converges uniformly with respect to the initial data in \(L^\infty (0,T;H^s(\mathbb {R}))\) to the inviscid Burgers equation as the filter parameter \(\alpha \) tends to zero. This is a complement of our recent result on the zero-filter limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信