{"title":"凹凸条件下最大算子的尖锐两重估计值","authors":"Adam Osękowski","doi":"10.1007/s00605-023-01932-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathcal {M}}_{\\mathcal {D}}\\)</span> be the dyadic maximal operator on <span>\\({\\mathbb {R}}^n\\)</span>. The paper contains the identification of the best constant in the two-weight estimate </p><span>$$\\begin{aligned} \\Vert {\\mathcal {M}}_{\\mathcal {D}}f\\Vert _{L^p(w)}\\le C_{p,\\sigma ,w}\\Vert f\\Vert _{L^p(\\sigma ^{1-p})} \\end{aligned}$$</span><p>under the assumption that the pair <span>\\((\\sigma ,w)\\)</span> of weights satisfies an appropriate bump condition. The result is shown to be true in the larger context of abstract probability spaces equipped with a tree-like structure.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sharp two-weight estimate for the maximal operator under a bump condition\",\"authors\":\"Adam Osękowski\",\"doi\":\"10.1007/s00605-023-01932-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathcal {M}}_{\\\\mathcal {D}}\\\\)</span> be the dyadic maximal operator on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span>. The paper contains the identification of the best constant in the two-weight estimate </p><span>$$\\\\begin{aligned} \\\\Vert {\\\\mathcal {M}}_{\\\\mathcal {D}}f\\\\Vert _{L^p(w)}\\\\le C_{p,\\\\sigma ,w}\\\\Vert f\\\\Vert _{L^p(\\\\sigma ^{1-p})} \\\\end{aligned}$$</span><p>under the assumption that the pair <span>\\\\((\\\\sigma ,w)\\\\)</span> of weights satisfies an appropriate bump condition. The result is shown to be true in the larger context of abstract probability spaces equipped with a tree-like structure.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01932-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01932-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sharp two-weight estimate for the maximal operator under a bump condition
Let \({\mathcal {M}}_{\mathcal {D}}\) be the dyadic maximal operator on \({\mathbb {R}}^n\). The paper contains the identification of the best constant in the two-weight estimate
under the assumption that the pair \((\sigma ,w)\) of weights satisfies an appropriate bump condition. The result is shown to be true in the larger context of abstract probability spaces equipped with a tree-like structure.