凹凸条件下最大算子的尖锐两重估计值

Adam Osękowski
{"title":"凹凸条件下最大算子的尖锐两重估计值","authors":"Adam Osękowski","doi":"10.1007/s00605-023-01932-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathcal {M}}_{\\mathcal {D}}\\)</span> be the dyadic maximal operator on <span>\\({\\mathbb {R}}^n\\)</span>. The paper contains the identification of the best constant in the two-weight estimate </p><span>$$\\begin{aligned} \\Vert {\\mathcal {M}}_{\\mathcal {D}}f\\Vert _{L^p(w)}\\le C_{p,\\sigma ,w}\\Vert f\\Vert _{L^p(\\sigma ^{1-p})} \\end{aligned}$$</span><p>under the assumption that the pair <span>\\((\\sigma ,w)\\)</span> of weights satisfies an appropriate bump condition. The result is shown to be true in the larger context of abstract probability spaces equipped with a tree-like structure.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sharp two-weight estimate for the maximal operator under a bump condition\",\"authors\":\"Adam Osękowski\",\"doi\":\"10.1007/s00605-023-01932-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathcal {M}}_{\\\\mathcal {D}}\\\\)</span> be the dyadic maximal operator on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span>. The paper contains the identification of the best constant in the two-weight estimate </p><span>$$\\\\begin{aligned} \\\\Vert {\\\\mathcal {M}}_{\\\\mathcal {D}}f\\\\Vert _{L^p(w)}\\\\le C_{p,\\\\sigma ,w}\\\\Vert f\\\\Vert _{L^p(\\\\sigma ^{1-p})} \\\\end{aligned}$$</span><p>under the assumption that the pair <span>\\\\((\\\\sigma ,w)\\\\)</span> of weights satisfies an appropriate bump condition. The result is shown to be true in the larger context of abstract probability spaces equipped with a tree-like structure.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01932-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01932-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathcal {M}}_{\mathcal {D}}\) 是 \({\mathbb {R}}^n\) 上的二元最大算子。本文包含对两重估计 $$\begin{aligned} 中最佳常数的识别。\Vert {\mathcal {M}}_{\mathcal {D}}f\Vert _{L^p(w)}\le C_{p,\sigma ,w}\Vert f\Vert _{L^p(\sigma ^{1-p})}\end{aligned}$$假设权重对((\sigma ,w)\)满足适当的碰撞条件。结果表明,在具有树状结构的抽象概率空间的更大范围内,该结果是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A sharp two-weight estimate for the maximal operator under a bump condition

A sharp two-weight estimate for the maximal operator under a bump condition

Let \({\mathcal {M}}_{\mathcal {D}}\) be the dyadic maximal operator on \({\mathbb {R}}^n\). The paper contains the identification of the best constant in the two-weight estimate

$$\begin{aligned} \Vert {\mathcal {M}}_{\mathcal {D}}f\Vert _{L^p(w)}\le C_{p,\sigma ,w}\Vert f\Vert _{L^p(\sigma ^{1-p})} \end{aligned}$$

under the assumption that the pair \((\sigma ,w)\) of weights satisfies an appropriate bump condition. The result is shown to be true in the larger context of abstract probability spaces equipped with a tree-like structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信