从最佳协同逼近的角度看巴拿赫空间的某些特殊子空间

{"title":"从最佳协同逼近的角度看巴拿赫空间的某些特殊子空间","authors":"","doi":"10.1007/s00605-023-01930-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study the best coapproximation problem in Banach spaces, by using Birkhoff–James orthogonality techniques. We introduce two special types of subspaces, christened the anti-coproximinal subspaces and the strongly anti-coproximinal subspaces. We obtain a necessary condition for the strongly anti-coproximinal subspaces in a reflexive Banach space whose dual space satisfies the Kadets–Klee Property. On the other hand, we provide a sufficient condition for the strongly anti-coproximinal subspaces in a general Banach space. We also characterize the anti-coproximinal subspaces of a smooth Banach space. Further, we study these special subspaces in a finite-dimensional polyhedral Banach space and find some interesting geometric structures associated with them.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some special subspaces of a Banach space, from the perspective of best coapproximation\",\"authors\":\"\",\"doi\":\"10.1007/s00605-023-01930-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We study the best coapproximation problem in Banach spaces, by using Birkhoff–James orthogonality techniques. We introduce two special types of subspaces, christened the anti-coproximinal subspaces and the strongly anti-coproximinal subspaces. We obtain a necessary condition for the strongly anti-coproximinal subspaces in a reflexive Banach space whose dual space satisfies the Kadets–Klee Property. On the other hand, we provide a sufficient condition for the strongly anti-coproximinal subspaces in a general Banach space. We also characterize the anti-coproximinal subspaces of a smooth Banach space. Further, we study these special subspaces in a finite-dimensional polyhedral Banach space and find some interesting geometric structures associated with them.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01930-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01930-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们利用伯克霍夫-詹姆斯正交技术研究巴拿赫空间中的最佳逼近问题。我们引入了两种特殊类型的子空间,分别称为反逼近子空间和强反逼近子空间。我们得到了反向巴拿赫空间中强反oproximinal子空间的必要条件,其对偶空间满足卡德茨-克利性质(Kadets-Klee Property)。另一方面,我们为一般巴拿赫空间中的强反oproximinal子空间提供了一个充分条件。我们还描述了光滑巴拿赫空间的反oproximinal子空间的特征。此外,我们还研究了有限维多面体巴拿赫空间中的这些特殊子空间,并发现了与之相关的一些有趣的几何结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some special subspaces of a Banach space, from the perspective of best coapproximation

Abstract

We study the best coapproximation problem in Banach spaces, by using Birkhoff–James orthogonality techniques. We introduce two special types of subspaces, christened the anti-coproximinal subspaces and the strongly anti-coproximinal subspaces. We obtain a necessary condition for the strongly anti-coproximinal subspaces in a reflexive Banach space whose dual space satisfies the Kadets–Klee Property. On the other hand, we provide a sufficient condition for the strongly anti-coproximinal subspaces in a general Banach space. We also characterize the anti-coproximinal subspaces of a smooth Banach space. Further, we study these special subspaces in a finite-dimensional polyhedral Banach space and find some interesting geometric structures associated with them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信