{"title":"论费耶尔和卢卡奇的正弦多项式","authors":"Horst Alzer, Man Kam Kwong","doi":"10.1007/s00013-023-01950-2","DOIUrl":null,"url":null,"abstract":"<div><p>The sine polynomials of Fejér and Lukács are defined by </p><div><div><span>$$\\begin{aligned} F_n(x)=\\sum _{k=1}^n\\frac{\\sin (kx)}{k} \\quad \\text{ and } \\quad L_n(x)=\\sum _{k=1}^n (n-k+1)\\sin (kx), \\end{aligned}$$</span></div></div><p>respectively. We prove that for all <span>\\(n\\ge 2\\)</span> and <span>\\(x\\in (0,\\pi )\\)</span>, we have </p><div><div><span>$$\\begin{aligned} F_n(x)\\le \\lambda \\, L_n(x) \\quad \\text{ and } \\quad \\mu \\le \\frac{1}{F_n(x)}-\\frac{1}{L_n(x)} \\end{aligned}$$</span></div></div><p>with the best possible constants </p><div><div><span>$$\\begin{aligned} \\lambda = \\frac{8-3\\sqrt{2}}{12(2-\\sqrt{2})} \\quad \\text{ and } \\quad \\mu =\\frac{2}{9}\\sqrt{3}. \\end{aligned}$$</span></div></div><p>An application of the first inequality leads to a class of absolutely monotonic functions involving the arctan function.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 3","pages":"307 - 317"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the sine polynomials of Fejér and Lukács\",\"authors\":\"Horst Alzer, Man Kam Kwong\",\"doi\":\"10.1007/s00013-023-01950-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sine polynomials of Fejér and Lukács are defined by </p><div><div><span>$$\\\\begin{aligned} F_n(x)=\\\\sum _{k=1}^n\\\\frac{\\\\sin (kx)}{k} \\\\quad \\\\text{ and } \\\\quad L_n(x)=\\\\sum _{k=1}^n (n-k+1)\\\\sin (kx), \\\\end{aligned}$$</span></div></div><p>respectively. We prove that for all <span>\\\\(n\\\\ge 2\\\\)</span> and <span>\\\\(x\\\\in (0,\\\\pi )\\\\)</span>, we have </p><div><div><span>$$\\\\begin{aligned} F_n(x)\\\\le \\\\lambda \\\\, L_n(x) \\\\quad \\\\text{ and } \\\\quad \\\\mu \\\\le \\\\frac{1}{F_n(x)}-\\\\frac{1}{L_n(x)} \\\\end{aligned}$$</span></div></div><p>with the best possible constants </p><div><div><span>$$\\\\begin{aligned} \\\\lambda = \\\\frac{8-3\\\\sqrt{2}}{12(2-\\\\sqrt{2})} \\\\quad \\\\text{ and } \\\\quad \\\\mu =\\\\frac{2}{9}\\\\sqrt{3}. \\\\end{aligned}$$</span></div></div><p>An application of the first inequality leads to a class of absolutely monotonic functions involving the arctan function.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 3\",\"pages\":\"307 - 317\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01950-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01950-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.