可校准切格-塞林域上的无界周期恒均值曲率图

IF 0.5 4区 数学 Q3 MATHEMATICS
Ignace Aristide Minlend
{"title":"可校准切格-塞林域上的无界周期恒均值曲率图","authors":"Ignace Aristide Minlend","doi":"10.1007/s00013-023-01960-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a general result characterizing a specific class of Serrin domains as supports of unbounded and periodic constant mean curvature graphs. We apply this result to prove the existence of a family of unbounded periodic constant mean curvature graphs, each supported by a Serrin domain and intersecting its boundary orthogonally, up to a translation. We also show that the underlying Serrin domains are calibrable and Cheeger in a suitable sense, and they solve the 1-Laplacian equation.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 3","pages":"319 - 329"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded periodic constant mean curvature graphs on calibrable Cheeger Serrin domains\",\"authors\":\"Ignace Aristide Minlend\",\"doi\":\"10.1007/s00013-023-01960-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a general result characterizing a specific class of Serrin domains as supports of unbounded and periodic constant mean curvature graphs. We apply this result to prove the existence of a family of unbounded periodic constant mean curvature graphs, each supported by a Serrin domain and intersecting its boundary orthogonally, up to a translation. We also show that the underlying Serrin domains are calibrable and Cheeger in a suitable sense, and they solve the 1-Laplacian equation.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 3\",\"pages\":\"319 - 329\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01960-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01960-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个一般结果,它描述了作为无界周期性均值曲率恒定图的支撑的一类特定塞林域的特征。我们应用这一结果证明了无界周期性恒均值曲率图形族的存在,每个图形都由一个塞林域支撑,并与其边界正交,直至平移。我们还证明了底层 Serrin 域在适当的意义上是可校准的和 Cheeger 的,并且它们解决了 1-Laplacian 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded periodic constant mean curvature graphs on calibrable Cheeger Serrin domains

We prove a general result characterizing a specific class of Serrin domains as supports of unbounded and periodic constant mean curvature graphs. We apply this result to prove the existence of a family of unbounded periodic constant mean curvature graphs, each supported by a Serrin domain and intersecting its boundary orthogonally, up to a translation. We also show that the underlying Serrin domains are calibrable and Cheeger in a suitable sense, and they solve the 1-Laplacian equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信