{"title":"具有密度粘度和真空自由边界的圆柱对称可压缩纳维-斯托克斯方程的解析解","authors":"Jianwei Dong, Haijie Cui","doi":"10.1007/s00574-023-00382-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the analytical solutions to the cylindrically symmetric compressible Navier–Stokes equations with density-dependent viscosity and vacuum free boundary. The shear and bulk viscosity coefficients are assumed to be a power function of the density and a positive constant, respectively, and the free boundary is assumed to move in the radial direction with the radial velocity, which will affect the angular velocity but does not affect the axial velocity. We obtain a global analytical solution by using some ansatzs and reducing the original partial differential equations into a nonlinear ordinary differential equation about the free boundary. The free boundary is shown to grow at least sub-linearly in time and not more than linearly in time for the analytical solution by using a new averaged quantity.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Solutions to the Cylindrically Symmetric Compressible Navier–Stokes Equations with Density-Dependent Viscosity and Vacuum Free Boundary\",\"authors\":\"Jianwei Dong, Haijie Cui\",\"doi\":\"10.1007/s00574-023-00382-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the analytical solutions to the cylindrically symmetric compressible Navier–Stokes equations with density-dependent viscosity and vacuum free boundary. The shear and bulk viscosity coefficients are assumed to be a power function of the density and a positive constant, respectively, and the free boundary is assumed to move in the radial direction with the radial velocity, which will affect the angular velocity but does not affect the axial velocity. We obtain a global analytical solution by using some ansatzs and reducing the original partial differential equations into a nonlinear ordinary differential equation about the free boundary. The free boundary is shown to grow at least sub-linearly in time and not more than linearly in time for the analytical solution by using a new averaged quantity.</p>\",\"PeriodicalId\":501417,\"journal\":{\"name\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00574-023-00382-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-023-00382-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical Solutions to the Cylindrically Symmetric Compressible Navier–Stokes Equations with Density-Dependent Viscosity and Vacuum Free Boundary
In this paper, we investigate the analytical solutions to the cylindrically symmetric compressible Navier–Stokes equations with density-dependent viscosity and vacuum free boundary. The shear and bulk viscosity coefficients are assumed to be a power function of the density and a positive constant, respectively, and the free boundary is assumed to move in the radial direction with the radial velocity, which will affect the angular velocity but does not affect the axial velocity. We obtain a global analytical solution by using some ansatzs and reducing the original partial differential equations into a nonlinear ordinary differential equation about the free boundary. The free boundary is shown to grow at least sub-linearly in time and not more than linearly in time for the analytical solution by using a new averaged quantity.