S. Sincomb , F. Moral-Pulido , O. Campos , C. Martínez-Bazán , V. Haughton , A.L. Sánchez
{"title":"大脑导水管振荡流动的体外实验研究","authors":"S. Sincomb , F. Moral-Pulido , O. Campos , C. Martínez-Bazán , V. Haughton , A.L. Sánchez","doi":"10.1016/j.euromechflu.2024.01.010","DOIUrl":null,"url":null,"abstract":"<div><p>This <em>in vitro</em> study aims at clarifying the relation between the oscillatory flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a narrow conduit connecting the third and fourth ventricles, and the corresponding interventricular pressure difference. Dimensional analysis is used in designing an anatomically correct scaled model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. The time-varying pressure difference across the aqueduct corresponding to a given oscillatory flow rate is measured in parametric ranges covering the range of flow conditions commonly encountered in healthy subjects. Parametric dependences are delineated for the time-averaged pressure fluctuations and for the phase lag between the transaqueductal pressure difference and the flow rate, both having clinical relevance. The results are validated through comparisons with predictions obtained with a previously derived computational model. The parametric quantification in this study enables the derivation of a simple formula for the relation between the transaqueductal pressure and the stroke volume. This relationship can be useful in the quantification of transmantle pressure differences based on non-invasive magnetic-resonance-velocimetry measurements of aqueduct flow for investigation of CSF-related disorders.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000189/pdfft?md5=d416acd45c3937f19d6cefe6d2d382ed&pid=1-s2.0-S0997754624000189-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An in vitro experimental investigation of oscillatory flow in the cerebral aqueduct\",\"authors\":\"S. Sincomb , F. Moral-Pulido , O. Campos , C. Martínez-Bazán , V. Haughton , A.L. Sánchez\",\"doi\":\"10.1016/j.euromechflu.2024.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This <em>in vitro</em> study aims at clarifying the relation between the oscillatory flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a narrow conduit connecting the third and fourth ventricles, and the corresponding interventricular pressure difference. Dimensional analysis is used in designing an anatomically correct scaled model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. The time-varying pressure difference across the aqueduct corresponding to a given oscillatory flow rate is measured in parametric ranges covering the range of flow conditions commonly encountered in healthy subjects. Parametric dependences are delineated for the time-averaged pressure fluctuations and for the phase lag between the transaqueductal pressure difference and the flow rate, both having clinical relevance. The results are validated through comparisons with predictions obtained with a previously derived computational model. The parametric quantification in this study enables the derivation of a simple formula for the relation between the transaqueductal pressure and the stroke volume. This relationship can be useful in the quantification of transmantle pressure differences based on non-invasive magnetic-resonance-velocimetry measurements of aqueduct flow for investigation of CSF-related disorders.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000189/pdfft?md5=d416acd45c3937f19d6cefe6d2d382ed&pid=1-s2.0-S0997754624000189-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000189\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000189","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
An in vitro experimental investigation of oscillatory flow in the cerebral aqueduct
This in vitro study aims at clarifying the relation between the oscillatory flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a narrow conduit connecting the third and fourth ventricles, and the corresponding interventricular pressure difference. Dimensional analysis is used in designing an anatomically correct scaled model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. The time-varying pressure difference across the aqueduct corresponding to a given oscillatory flow rate is measured in parametric ranges covering the range of flow conditions commonly encountered in healthy subjects. Parametric dependences are delineated for the time-averaged pressure fluctuations and for the phase lag between the transaqueductal pressure difference and the flow rate, both having clinical relevance. The results are validated through comparisons with predictions obtained with a previously derived computational model. The parametric quantification in this study enables the derivation of a simple formula for the relation between the transaqueductal pressure and the stroke volume. This relationship can be useful in the quantification of transmantle pressure differences based on non-invasive magnetic-resonance-velocimetry measurements of aqueduct flow for investigation of CSF-related disorders.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.