高攻角条件下风力涡轮机机翼响应的分岔行为研究

IF 2.5 3区 工程技术 Q2 MECHANICS
Bo Lian, Xiaocheng Zhu, Zhaohui Du
{"title":"高攻角条件下风力涡轮机机翼响应的分岔行为研究","authors":"Bo Lian,&nbsp;Xiaocheng Zhu,&nbsp;Zhaohui Du","doi":"10.1016/j.euromechflu.2024.01.013","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Design load and vibration for parked conditions are gaining in importance for large-scale modern wind turbines<span> with increasing flexibility, especially edgewise vibration when the blade is at a high angle of attack<span>. In this work, flow-induced vibration of the wind turbine airfoil at 90 degrees of attack angle is studied with the fluid-structure interaction (FSI) simulation. The unsteady </span></span></span>aerodynamic force<span> due to flow separation and vortex shedding at the high angle of attack causes the chordwise vibration of the airfoil. When the vortex shedding frequency </span></span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> gets close to the chordwise natural frequency <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the airfoil, vortex-induced vibration (VIV) of high amplitude occurs accompanied with the frequency lock-in phenomenon. In the post lock-in regime, it is found that period-3 and torus bifurcation occur successively and the vibration response becomes aperiodic. Dynamic mode decomposition(DMD) technique is used to investigate the mechanism of bifurcation from the perspective of energy balance, through analyzing the vorticity field in the wake and pressure distribution on the airfoil surface. For the certain incoming velocity in the post lock-in regime, since the frequency of the DMD mode </span><span><math><mrow><mi>f</mi><mo>=</mo><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>/</mo><mn>3</mn></mrow></math></span> is close to the natural frequency<span><math><mrow><mspace></mspace><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, both the vibration of frequency <span><math><mrow><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>/</mo><mn>3</mn></mrow></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> get excited, leading to the onset of bifurcation. The Lissajou curves are obtained through reconstructing the transient pressure of each DMD mode, which indicates that energy transfer mainly exists in modes <span><math><mrow><mi>f</mi><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>. In addition, the reconstructed Lissajou curves based on the leading DMD modes agree well with the original time-domain Lissajou curves.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on bifurcation behavior of wind turbine airfoil response at a high angle of attack\",\"authors\":\"Bo Lian,&nbsp;Xiaocheng Zhu,&nbsp;Zhaohui Du\",\"doi\":\"10.1016/j.euromechflu.2024.01.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Design load and vibration for parked conditions are gaining in importance for large-scale modern wind turbines<span> with increasing flexibility, especially edgewise vibration when the blade is at a high angle of attack<span>. In this work, flow-induced vibration of the wind turbine airfoil at 90 degrees of attack angle is studied with the fluid-structure interaction (FSI) simulation. The unsteady </span></span></span>aerodynamic force<span> due to flow separation and vortex shedding at the high angle of attack causes the chordwise vibration of the airfoil. When the vortex shedding frequency </span></span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> gets close to the chordwise natural frequency <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the airfoil, vortex-induced vibration (VIV) of high amplitude occurs accompanied with the frequency lock-in phenomenon. In the post lock-in regime, it is found that period-3 and torus bifurcation occur successively and the vibration response becomes aperiodic. Dynamic mode decomposition(DMD) technique is used to investigate the mechanism of bifurcation from the perspective of energy balance, through analyzing the vorticity field in the wake and pressure distribution on the airfoil surface. For the certain incoming velocity in the post lock-in regime, since the frequency of the DMD mode </span><span><math><mrow><mi>f</mi><mo>=</mo><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>/</mo><mn>3</mn></mrow></math></span> is close to the natural frequency<span><math><mrow><mspace></mspace><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, both the vibration of frequency <span><math><mrow><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>/</mo><mn>3</mn></mrow></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> get excited, leading to the onset of bifurcation. The Lissajou curves are obtained through reconstructing the transient pressure of each DMD mode, which indicates that energy transfer mainly exists in modes <span><math><mrow><mi>f</mi><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>. In addition, the reconstructed Lissajou curves based on the leading DMD modes agree well with the original time-domain Lissajou curves.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000220\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000220","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

对于灵活性不断提高的大型现代风力涡轮机来说,停机条件下的设计载荷和振动变得越来越重要,尤其是叶片处于高攻角时的边缘振动。在这项工作中,利用流固耦合(FSI)模拟研究了风力涡轮机机翼在 90 度攻角时的流动诱导振动。在高攻角时,由于气流分离和涡流脱落产生的不稳定气动力会引起机翼的弦向振动。当涡流脱落频率 fv 接近机翼的弦向固有频率 fn 时,就会产生高振幅的涡流诱导振动(VIV),并伴有频率锁定现象。在锁频后状态下,会相继出现周期-3 和环形分岔,振动响应变为非周期性。采用动态模态分解(DMD)技术,通过分析尾流涡旋场和翼面压力分布,从能量平衡的角度研究了分岔的机理。在后锁定状态下,对于一定的入射速度,由于 DMD 模式的频率 f=2fv/3 与固有频率fn 相近,频率为 2fv/3 和 fv 的振动都会被激发,从而导致分岔的发生。通过重构每个 DMD 模式的瞬态压力可得到 Lissajou 曲线,这表明能量传递主要存在于 f=fv 模式中。此外,基于主导 DMD 模式重建的利萨祖曲线与原始时域利萨祖曲线吻合得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigations on bifurcation behavior of wind turbine airfoil response at a high angle of attack

Design load and vibration for parked conditions are gaining in importance for large-scale modern wind turbines with increasing flexibility, especially edgewise vibration when the blade is at a high angle of attack. In this work, flow-induced vibration of the wind turbine airfoil at 90 degrees of attack angle is studied with the fluid-structure interaction (FSI) simulation. The unsteady aerodynamic force due to flow separation and vortex shedding at the high angle of attack causes the chordwise vibration of the airfoil. When the vortex shedding frequency fv gets close to the chordwise natural frequency fn of the airfoil, vortex-induced vibration (VIV) of high amplitude occurs accompanied with the frequency lock-in phenomenon. In the post lock-in regime, it is found that period-3 and torus bifurcation occur successively and the vibration response becomes aperiodic. Dynamic mode decomposition(DMD) technique is used to investigate the mechanism of bifurcation from the perspective of energy balance, through analyzing the vorticity field in the wake and pressure distribution on the airfoil surface. For the certain incoming velocity in the post lock-in regime, since the frequency of the DMD mode f=2fv/3 is close to the natural frequencyfn, both the vibration of frequency 2fv/3 and fv get excited, leading to the onset of bifurcation. The Lissajou curves are obtained through reconstructing the transient pressure of each DMD mode, which indicates that energy transfer mainly exists in modes f=fv. In addition, the reconstructed Lissajou curves based on the leading DMD modes agree well with the original time-domain Lissajou curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信