临界薛定谔-麦克斯韦式问题的非退行性和无限多解

IF 1 3区 数学 Q1 MATHEMATICS
Yuxia Guo, Yichen Hu, Shaolong Peng
{"title":"临界薛定谔-麦克斯韦式问题的非退行性和无限多解","authors":"Yuxia Guo, Yichen Hu, Shaolong Peng","doi":"10.1007/s11118-024-10123-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following Schrödinger-Maxwell type equation with critical exponent <span>\\(-\\Delta u=K(y)\\Big (\\frac{1}{|x|^{n-2}}*K(x)|u|^{\\frac{n+2}{n-2}}\\Big )u^{\\frac{4}{n-2}},\\quad {in}\\,\\, \\mathbb {R}^n, \\qquad \\text {(0.1)}\\)</span> where the function <i>K</i> satisfies the assumption <span>\\(\\mathcal {F}\\)</span>, and <span>\\(*\\)</span> stands for the standard convolution. We first derived the non-degeneracy result for the critical Schrödinger-Maxwell equation. Then, as an application, we proved that problem Eq. (0.1) admits infinitely many non-radial positive solutions with arbitrary large energy. We believe that the various new ideas and technique computations that we used in this paper would be useful to deal with other related elliptic problems involving convolution nonlinear terms.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"121 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Degeneracy and Infinitely Many Solutions for Critical SchrÖDinger-Maxwell Type Problem\",\"authors\":\"Yuxia Guo, Yichen Hu, Shaolong Peng\",\"doi\":\"10.1007/s11118-024-10123-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the following Schrödinger-Maxwell type equation with critical exponent <span>\\\\(-\\\\Delta u=K(y)\\\\Big (\\\\frac{1}{|x|^{n-2}}*K(x)|u|^{\\\\frac{n+2}{n-2}}\\\\Big )u^{\\\\frac{4}{n-2}},\\\\quad {in}\\\\,\\\\, \\\\mathbb {R}^n, \\\\qquad \\\\text {(0.1)}\\\\)</span> where the function <i>K</i> satisfies the assumption <span>\\\\(\\\\mathcal {F}\\\\)</span>, and <span>\\\\(*\\\\)</span> stands for the standard convolution. We first derived the non-degeneracy result for the critical Schrödinger-Maxwell equation. Then, as an application, we proved that problem Eq. (0.1) admits infinitely many non-radial positive solutions with arbitrary large energy. We believe that the various new ideas and technique computations that we used in this paper would be useful to deal with other related elliptic problems involving convolution nonlinear terms.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10123-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10123-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑以下具有临界指数的薛定谔-麦克斯韦式方程(-/Delta u=K(y)\Big (\frac{1}{|x|^{n-2}}*K(x)|u|^{frac{n+2}{n-2}}\Big )u^{frac{4}{n-2}}、\quad {in}\,\mathbb {R}^n, \qquad \text {(0.1)}),其中函数 K 满足假设(\(\mathcal {F}\),而\(*\)代表标准卷积。我们首先得出了临界薛定谔-麦克斯韦方程的非退化结果。然后,作为一个应用,我们证明了问题式(0.1)中存在无限多具有任意大能量的非径向正解。我们相信,我们在本文中使用的各种新思路和计算技术将有助于处理其他涉及卷积非线性项的相关椭圆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Degeneracy and Infinitely Many Solutions for Critical SchrÖDinger-Maxwell Type Problem

In this paper, we consider the following Schrödinger-Maxwell type equation with critical exponent \(-\Delta u=K(y)\Big (\frac{1}{|x|^{n-2}}*K(x)|u|^{\frac{n+2}{n-2}}\Big )u^{\frac{4}{n-2}},\quad {in}\,\, \mathbb {R}^n, \qquad \text {(0.1)}\) where the function K satisfies the assumption \(\mathcal {F}\), and \(*\) stands for the standard convolution. We first derived the non-degeneracy result for the critical Schrödinger-Maxwell equation. Then, as an application, we proved that problem Eq. (0.1) admits infinitely many non-radial positive solutions with arbitrary large energy. We believe that the various new ideas and technique computations that we used in this paper would be useful to deal with other related elliptic problems involving convolution nonlinear terms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信