{"title":"巢状代数上的列可导映射","authors":"Lei Liu, Kaipeng Li","doi":"10.1007/s43034-023-00315-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {N}\\)</span> be a non-trivial nest on a Hilbert space <i>H</i> and <span>\\(\\textrm{alg}\\mathcal {N}\\)</span> be the associated nest algebra. Let <span>\\(G\\in \\textrm{alg}\\mathcal {N}\\)</span> be an operator with <span>\\(\\overline{\\textrm{ran}(G)}\\in \\mathcal {N}\\backslash \\{H\\}\\)</span>. In this note, we give a description of Lie derivable maps and generalized Lie 2-derivable maps at <i>G</i> of nest algebra <span>\\(\\textrm{alg}\\mathcal {N}\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie derivable maps on nest algebras\",\"authors\":\"Lei Liu, Kaipeng Li\",\"doi\":\"10.1007/s43034-023-00315-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {N}\\\\)</span> be a non-trivial nest on a Hilbert space <i>H</i> and <span>\\\\(\\\\textrm{alg}\\\\mathcal {N}\\\\)</span> be the associated nest algebra. Let <span>\\\\(G\\\\in \\\\textrm{alg}\\\\mathcal {N}\\\\)</span> be an operator with <span>\\\\(\\\\overline{\\\\textrm{ran}(G)}\\\\in \\\\mathcal {N}\\\\backslash \\\\{H\\\\}\\\\)</span>. In this note, we give a description of Lie derivable maps and generalized Lie 2-derivable maps at <i>G</i> of nest algebra <span>\\\\(\\\\textrm{alg}\\\\mathcal {N}\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00315-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00315-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let \(\mathcal {N}\) be a non-trivial nest on a Hilbert space H and \(\textrm{alg}\mathcal {N}\) be the associated nest algebra. Let \(G\in \textrm{alg}\mathcal {N}\) be an operator with \(\overline{\textrm{ran}(G)}\in \mathcal {N}\backslash \{H\}\). In this note, we give a description of Lie derivable maps and generalized Lie 2-derivable maps at G of nest algebra \(\textrm{alg}\mathcal {N}\).
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.