{"title":"利用混合最小二乘深度神经网络根据内部测量结果绘制电导率图像","authors":"Bangti Jin, Xiyao Li, Qimeng Quan, Zhi Zhou","doi":"10.1137/23m1562536","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 147-187, March 2024. <br/> Abstract. In this work, we develop a novel approach using deep neural networks (DNNs) to reconstruct the conductivity distribution in elliptic problems from one measurement of the solution over the whole domain. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective, with DNNs as ansatz functions to approximate the conductivity and flux simultaneously. We provide a thorough analysis of the DNN approximations of the conductivity for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters, and neural network architectural parameters (depth, width, and parameter bounds). We also provide multiple numerical experiments in two dimensions and multidimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"255 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductivity Imaging from Internal Measurements with Mixed Least-Squares Deep Neural Networks\",\"authors\":\"Bangti Jin, Xiyao Li, Qimeng Quan, Zhi Zhou\",\"doi\":\"10.1137/23m1562536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 147-187, March 2024. <br/> Abstract. In this work, we develop a novel approach using deep neural networks (DNNs) to reconstruct the conductivity distribution in elliptic problems from one measurement of the solution over the whole domain. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective, with DNNs as ansatz functions to approximate the conductivity and flux simultaneously. We provide a thorough analysis of the DNN approximations of the conductivity for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters, and neural network architectural parameters (depth, width, and parameter bounds). We also provide multiple numerical experiments in two dimensions and multidimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1562536\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1562536","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Conductivity Imaging from Internal Measurements with Mixed Least-Squares Deep Neural Networks
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 147-187, March 2024. Abstract. In this work, we develop a novel approach using deep neural networks (DNNs) to reconstruct the conductivity distribution in elliptic problems from one measurement of the solution over the whole domain. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective, with DNNs as ansatz functions to approximate the conductivity and flux simultaneously. We provide a thorough analysis of the DNN approximations of the conductivity for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters, and neural network architectural parameters (depth, width, and parameter bounds). We also provide multiple numerical experiments in two dimensions and multidimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.