稳健的张量 CUR 分解:利用稀疏破坏快速恢复低塔克等级张量

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
HanQin Cai, Zehan Chao, Longxiu Huang, Deanna Needell
{"title":"稳健的张量 CUR 分解:利用稀疏破坏快速恢复低塔克等级张量","authors":"HanQin Cai, Zehan Chao, Longxiu Huang, Deanna Needell","doi":"10.1137/23m1574282","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 225-247, March 2024. <br/> Abstract. We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of matrix robust principal component analysis, which aims to split the given tensor into an underlying low-rank component and a sparse outlier component. This work proposes a fast algorithm, called robust tensor CUR decompositions (RTCUR), for large-scale nonconvex TRPCA problems under the Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed tensor CUR decomposition to substantially reduce the computational complexity in each projection. In addition, we develop four variants of RTCUR for different application settings. We demonstrate the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both synthetic and real-world datasets.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Tensor CUR Decompositions: Rapid Low-Tucker-Rank Tensor Recovery with Sparse Corruptions\",\"authors\":\"HanQin Cai, Zehan Chao, Longxiu Huang, Deanna Needell\",\"doi\":\"10.1137/23m1574282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 225-247, March 2024. <br/> Abstract. We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of matrix robust principal component analysis, which aims to split the given tensor into an underlying low-rank component and a sparse outlier component. This work proposes a fast algorithm, called robust tensor CUR decompositions (RTCUR), for large-scale nonconvex TRPCA problems under the Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed tensor CUR decomposition to substantially reduce the computational complexity in each projection. In addition, we develop four variants of RTCUR for different application settings. We demonstrate the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both synthetic and real-world datasets.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1574282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1574282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 影像科学杂志》第 17 卷第 1 期第 225-247 页,2024 年 3 月。 摘要。我们研究了张量鲁棒主成分分析(TRPCA)问题,它是矩阵鲁棒主成分分析的一个张量扩展,旨在将给定的张量分成底层低秩成分和稀疏离群成分。本研究针对塔克秩设置下的大规模非凸 TRPCA 问题,提出了一种名为鲁棒张量 CUR 分解(RTCUR)的快速算法。RTCUR 是在交替投影框架内开发的,交替投影在低秩张量集合和稀疏张量集合之间进行投影。我们利用最近开发的张量 CUR 分解技术,大大降低了每次投影的计算复杂度。此外,我们还针对不同的应用设置开发了四种 RTCUR 变体。我们在合成数据集和现实世界数据集上展示了 RTCUR 与最先进方法相比的有效性和计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Tensor CUR Decompositions: Rapid Low-Tucker-Rank Tensor Recovery with Sparse Corruptions
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 225-247, March 2024.
Abstract. We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of matrix robust principal component analysis, which aims to split the given tensor into an underlying low-rank component and a sparse outlier component. This work proposes a fast algorithm, called robust tensor CUR decompositions (RTCUR), for large-scale nonconvex TRPCA problems under the Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed tensor CUR decomposition to substantially reduce the computational complexity in each projection. In addition, we develop four variants of RTCUR for different application settings. We demonstrate the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信