{"title":"氟化有机化合物是保护锂金属阳极的理想材料:综述","authors":"Tuoya Naren, Ruheng Jiang, Qianfeng Gu, Gui-chao Kuang, Libao Chen, Qichun Zhang","doi":"10.1016/j.mtener.2024.101512","DOIUrl":null,"url":null,"abstract":"<p>The lowest electrode potential and remarkable theoretical specific capacity of lithium (Li) metal make it a promising choice for next-generation high energy density batteries. However, the practical application of Lithium metal anodes (LMAs) faces several significant challenges due to their unwanted reactions with the electrolyte to continuously form Li dendrites. These issues significantly hinder both electrochemical performance and safety. To overcome these challenges, fluorinated organic materials (FOMs), with their unique chemical and physical properties, offer an exciting avenue for enhancing cycle stability and energy density of batteries. This is attributed to their higher electrolytic window and chemical stability. This review would provide a comprehensive overview of the crucial role played by FOMs in safeguarding LMAs, such as F-containing electrolyte engineering, separator modification, and artificial SEI. Additionally, it intends to explore the challenges and latest advances in this domain, with the ultimate objective of offering insights and forward-looking perspectives for future research initiatives in related areas.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"14 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorinated Organic Compounds As Promising Materials to Protect Lithium Metal Anode: A Review\",\"authors\":\"Tuoya Naren, Ruheng Jiang, Qianfeng Gu, Gui-chao Kuang, Libao Chen, Qichun Zhang\",\"doi\":\"10.1016/j.mtener.2024.101512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The lowest electrode potential and remarkable theoretical specific capacity of lithium (Li) metal make it a promising choice for next-generation high energy density batteries. However, the practical application of Lithium metal anodes (LMAs) faces several significant challenges due to their unwanted reactions with the electrolyte to continuously form Li dendrites. These issues significantly hinder both electrochemical performance and safety. To overcome these challenges, fluorinated organic materials (FOMs), with their unique chemical and physical properties, offer an exciting avenue for enhancing cycle stability and energy density of batteries. This is attributed to their higher electrolytic window and chemical stability. This review would provide a comprehensive overview of the crucial role played by FOMs in safeguarding LMAs, such as F-containing electrolyte engineering, separator modification, and artificial SEI. Additionally, it intends to explore the challenges and latest advances in this domain, with the ultimate objective of offering insights and forward-looking perspectives for future research initiatives in related areas.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101512\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101512","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
锂(Li)金属具有最低的电极电位和出色的理论比容量,使其成为下一代高能量密度电池的理想选择。然而,由于锂金属阳极(LMAs)与电解质会发生不良反应,不断形成锂枝晶,因此其实际应用面临着一些重大挑战。这些问题严重影响了电化学性能和安全性。为了克服这些挑战,氟化有机材料(FOMs)凭借其独特的化学和物理特性,为提高电池的循环稳定性和能量密度提供了一条令人兴奋的途径。这要归功于其较高的电解窗口和化学稳定性。本综述将全面概述 FOMs 在保护 LMA 方面发挥的关键作用,如含 F 电解质工程、隔膜改性和人工 SEI。此外,本综述还将探讨该领域的挑战和最新进展,最终目的是为相关领域的未来研究计划提供见解和前瞻性观点。
Fluorinated Organic Compounds As Promising Materials to Protect Lithium Metal Anode: A Review
The lowest electrode potential and remarkable theoretical specific capacity of lithium (Li) metal make it a promising choice for next-generation high energy density batteries. However, the practical application of Lithium metal anodes (LMAs) faces several significant challenges due to their unwanted reactions with the electrolyte to continuously form Li dendrites. These issues significantly hinder both electrochemical performance and safety. To overcome these challenges, fluorinated organic materials (FOMs), with their unique chemical and physical properties, offer an exciting avenue for enhancing cycle stability and energy density of batteries. This is attributed to their higher electrolytic window and chemical stability. This review would provide a comprehensive overview of the crucial role played by FOMs in safeguarding LMAs, such as F-containing electrolyte engineering, separator modification, and artificial SEI. Additionally, it intends to explore the challenges and latest advances in this domain, with the ultimate objective of offering insights and forward-looking perspectives for future research initiatives in related areas.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials