{"title":"广义质量作用系统中复杂平衡平衡点线性稳定性的充分条件","authors":"Stefan Müller, Georg Regensburger","doi":"10.1137/22m154260x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 325-357, March 2024. <br/> Abstract. Generalized mass-action systems are power-law dynamical systems arising from chemical reaction networks. Essentially, every nonnegative ODE model used in chemistry and biology (for example, in ecology and epidemiology) and even in economics and engineering can be written in this form. Previous results have focused on existence and uniqueness of special steady states (complex-balanced equilibria) for all rate constants, thereby ruling out multiple (special) steady states. Recently, necessary conditions for linear stability have been obtained. In this work, we provide sufficient conditions for the linear stability of complex-balanced equilibria for all rate constants (and also for the nonexistence of other steady states). In particular, via sign vector conditions (on the stoichiometric coefficients and kinetic orders), we guarantee that the Jacobian matrix is a [math]-matrix. Technically, we use a new decomposition of the graph Laplacian which allows us to consider orders of (generalized) monomials. Alternatively, we use cycle decomposition which allows a linear parametrization of all Jacobian matrices. In any case, we guarantee stability without explicit computation of steady states. We illustrate our results in examples from chemistry and biology: generalized Lotka–Volterra systems and SIR models, a two-component signaling system, and an enzymatic futile cycle.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"48 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient Conditions for Linear Stability of Complex-Balanced Equilibria in Generalized Mass-Action Systems\",\"authors\":\"Stefan Müller, Georg Regensburger\",\"doi\":\"10.1137/22m154260x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 325-357, March 2024. <br/> Abstract. Generalized mass-action systems are power-law dynamical systems arising from chemical reaction networks. Essentially, every nonnegative ODE model used in chemistry and biology (for example, in ecology and epidemiology) and even in economics and engineering can be written in this form. Previous results have focused on existence and uniqueness of special steady states (complex-balanced equilibria) for all rate constants, thereby ruling out multiple (special) steady states. Recently, necessary conditions for linear stability have been obtained. In this work, we provide sufficient conditions for the linear stability of complex-balanced equilibria for all rate constants (and also for the nonexistence of other steady states). In particular, via sign vector conditions (on the stoichiometric coefficients and kinetic orders), we guarantee that the Jacobian matrix is a [math]-matrix. Technically, we use a new decomposition of the graph Laplacian which allows us to consider orders of (generalized) monomials. Alternatively, we use cycle decomposition which allows a linear parametrization of all Jacobian matrices. In any case, we guarantee stability without explicit computation of steady states. We illustrate our results in examples from chemistry and biology: generalized Lotka–Volterra systems and SIR models, a two-component signaling system, and an enzymatic futile cycle.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m154260x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m154260x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sufficient Conditions for Linear Stability of Complex-Balanced Equilibria in Generalized Mass-Action Systems
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 325-357, March 2024. Abstract. Generalized mass-action systems are power-law dynamical systems arising from chemical reaction networks. Essentially, every nonnegative ODE model used in chemistry and biology (for example, in ecology and epidemiology) and even in economics and engineering can be written in this form. Previous results have focused on existence and uniqueness of special steady states (complex-balanced equilibria) for all rate constants, thereby ruling out multiple (special) steady states. Recently, necessary conditions for linear stability have been obtained. In this work, we provide sufficient conditions for the linear stability of complex-balanced equilibria for all rate constants (and also for the nonexistence of other steady states). In particular, via sign vector conditions (on the stoichiometric coefficients and kinetic orders), we guarantee that the Jacobian matrix is a [math]-matrix. Technically, we use a new decomposition of the graph Laplacian which allows us to consider orders of (generalized) monomials. Alternatively, we use cycle decomposition which allows a linear parametrization of all Jacobian matrices. In any case, we guarantee stability without explicit computation of steady states. We illustrate our results in examples from chemistry and biology: generalized Lotka–Volterra systems and SIR models, a two-component signaling system, and an enzymatic futile cycle.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.