通过强化学习解符号方程

Lennart Dabelow, Masahito Ueda
{"title":"通过强化学习解符号方程","authors":"Lennart Dabelow, Masahito Ueda","doi":"arxiv-2401.13447","DOIUrl":null,"url":null,"abstract":"Machine-learning methods are gradually being adopted in a great variety of\nsocial, economic, and scientific contexts, yet they are notorious for\nstruggling with exact mathematics. A typical example is computer algebra, which\nincludes tasks like simplifying mathematical terms, calculating formal\nderivatives, or finding exact solutions of algebraic equations. Traditional\nsoftware packages for these purposes are commonly based on a huge database of\nrules for how a specific operation (e.g., differentiation) transforms a certain\nterm (e.g., sine function) into another one (e.g., cosine function). Thus far,\nthese rules have usually needed to be discovered and subsequently programmed by\nhumans. Focusing on the paradigmatic example of solving linear equations in\nsymbolic form, we demonstrate how the process of finding elementary\ntransformation rules and step-by-step solutions can be automated using\nreinforcement learning with deep neural networks.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic Equation Solving via Reinforcement Learning\",\"authors\":\"Lennart Dabelow, Masahito Ueda\",\"doi\":\"arxiv-2401.13447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-learning methods are gradually being adopted in a great variety of\\nsocial, economic, and scientific contexts, yet they are notorious for\\nstruggling with exact mathematics. A typical example is computer algebra, which\\nincludes tasks like simplifying mathematical terms, calculating formal\\nderivatives, or finding exact solutions of algebraic equations. Traditional\\nsoftware packages for these purposes are commonly based on a huge database of\\nrules for how a specific operation (e.g., differentiation) transforms a certain\\nterm (e.g., sine function) into another one (e.g., cosine function). Thus far,\\nthese rules have usually needed to be discovered and subsequently programmed by\\nhumans. Focusing on the paradigmatic example of solving linear equations in\\nsymbolic form, we demonstrate how the process of finding elementary\\ntransformation rules and step-by-step solutions can be automated using\\nreinforcement learning with deep neural networks.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.13447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.13447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法正逐渐被广泛应用于社会、经济和科学领域,但它们却因在精确数学方面的困难而臭名昭著。一个典型的例子是计算机代数,其中包括简化数学术语、计算形式化的余数或查找代数方程的精确解等任务。用于这些目的的传统软件包通常基于一个庞大的规则数据库,这些规则规定了特定运算(如微分)如何将某个术语(如正弦函数)转化为另一个术语(如余弦函数)。迄今为止,这些规则通常需要人类自己发现并编程。我们将重点放在以符号形式求解线性方程的典型例子上,展示了如何利用深度神经网络的强化学习来自动完成寻找基本变换规则和逐步求解的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic Equation Solving via Reinforcement Learning
Machine-learning methods are gradually being adopted in a great variety of social, economic, and scientific contexts, yet they are notorious for struggling with exact mathematics. A typical example is computer algebra, which includes tasks like simplifying mathematical terms, calculating formal derivatives, or finding exact solutions of algebraic equations. Traditional software packages for these purposes are commonly based on a huge database of rules for how a specific operation (e.g., differentiation) transforms a certain term (e.g., sine function) into another one (e.g., cosine function). Thus far, these rules have usually needed to be discovered and subsequently programmed by humans. Focusing on the paradigmatic example of solving linear equations in symbolic form, we demonstrate how the process of finding elementary transformation rules and step-by-step solutions can be automated using reinforcement learning with deep neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信