{"title":"用新兴标签标记项目:基于神经主题模型的少量学习方法","authors":"Shangkun Che, Hongyan Liu, Shen Liu","doi":"10.1145/3641859","DOIUrl":null,"url":null,"abstract":"<p>The tagging system has become a primary tool to organize information resources on the Internet, which benefits both users and the platforms. To build a successful tagging system, automatic tagging methods are desired. With the development of society, new tags keep emerging. The problem of tagging items with emerging tags is an open challenge for automatic tagging system, and it has not been well studied in the literature. We define this problem as a tag-centered cold-start problem in this study and propose a novel neural topic model based few-shot learning method named NTFSL to solve the problem. In our proposed method, we innovatively fuse the topic modeling task with the few-shot learning task, endowing the model with the capability to infer effective topics to solve the tag-centered cold-start problem with the property of interpretability. Meanwhile, we propose a novel neural topic model for the topic modeling task to improve the quality of inferred topics, which helps enhance the tagging performance. Furthermore, we develop a novel inference method based on the variational auto-encoding framework for model inference. We conducted extensive experiments on two real-world datasets and the results demonstrate the superior performance of our proposed model compared with state-of-the-art machine learning methods. Case studies also show the interpretability of the model.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"7 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tagging Items with Emerging Tags: A Neural Topic Model based Few-Shot Learning Approach\",\"authors\":\"Shangkun Che, Hongyan Liu, Shen Liu\",\"doi\":\"10.1145/3641859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tagging system has become a primary tool to organize information resources on the Internet, which benefits both users and the platforms. To build a successful tagging system, automatic tagging methods are desired. With the development of society, new tags keep emerging. The problem of tagging items with emerging tags is an open challenge for automatic tagging system, and it has not been well studied in the literature. We define this problem as a tag-centered cold-start problem in this study and propose a novel neural topic model based few-shot learning method named NTFSL to solve the problem. In our proposed method, we innovatively fuse the topic modeling task with the few-shot learning task, endowing the model with the capability to infer effective topics to solve the tag-centered cold-start problem with the property of interpretability. Meanwhile, we propose a novel neural topic model for the topic modeling task to improve the quality of inferred topics, which helps enhance the tagging performance. Furthermore, we develop a novel inference method based on the variational auto-encoding framework for model inference. We conducted extensive experiments on two real-world datasets and the results demonstrate the superior performance of our proposed model compared with state-of-the-art machine learning methods. Case studies also show the interpretability of the model.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641859\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641859","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Tagging Items with Emerging Tags: A Neural Topic Model based Few-Shot Learning Approach
The tagging system has become a primary tool to organize information resources on the Internet, which benefits both users and the platforms. To build a successful tagging system, automatic tagging methods are desired. With the development of society, new tags keep emerging. The problem of tagging items with emerging tags is an open challenge for automatic tagging system, and it has not been well studied in the literature. We define this problem as a tag-centered cold-start problem in this study and propose a novel neural topic model based few-shot learning method named NTFSL to solve the problem. In our proposed method, we innovatively fuse the topic modeling task with the few-shot learning task, endowing the model with the capability to infer effective topics to solve the tag-centered cold-start problem with the property of interpretability. Meanwhile, we propose a novel neural topic model for the topic modeling task to improve the quality of inferred topics, which helps enhance the tagging performance. Furthermore, we develop a novel inference method based on the variational auto-encoding framework for model inference. We conducted extensive experiments on two real-world datasets and the results demonstrate the superior performance of our proposed model compared with state-of-the-art machine learning methods. Case studies also show the interpretability of the model.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.