Otoya Nakakaze, István Koren, Florian Brillowski, Ralf Klamma
{"title":"工业机器的自适应改造:利用网络组装和边缘点对点连接","authors":"Otoya Nakakaze, István Koren, Florian Brillowski, Ralf Klamma","doi":"10.1007/s11280-024-01237-8","DOIUrl":null,"url":null,"abstract":"<p>Leveraging previously untapped data sources offers significant potential for value creation in the manufacturing sector. However, asset-heavy shop floors, extended machine replacement cycles, and equipment diversity necessitate considerable investments for achieving smart manufacturing, which can be particularly challenging for small businesses. Retrofitting presents a viable solution, enabling the integration of low-cost sensors and microcontrollers with older machines to collect and transmit data. In this paper, we introduce a concept and a prototype for retrofitting industrial environments using lightweight web technologies at the edge. Our approach employs WebAssembly as a novel bytecode standard, facilitating a consistent development environment from the cloud to the edge by operating on both browsers and bare-metal hardware. By attaining near-native performance and modularity reminiscent of container-based service architectures, we demonstrate the feasibility of our approach. Our prototype was evaluated with an actual industrial robot within a showcase factory, including measurements of data exchange with a cutting-edge data lake system. We further extended the prototype to incorporate a peer-to-peer network that facilitates message routing and WebAssembly software updates. Our technology establishes a foundational framework for the transition towards Industry 4.0. By integrating considerations of sustainability and human factors, it further extends this groundwork to facilitate progression into Industry 5.0.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive retrofitting for industrial machines: utilizing webassembly and peer-to-peer connectivity on the edge\",\"authors\":\"Otoya Nakakaze, István Koren, Florian Brillowski, Ralf Klamma\",\"doi\":\"10.1007/s11280-024-01237-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Leveraging previously untapped data sources offers significant potential for value creation in the manufacturing sector. However, asset-heavy shop floors, extended machine replacement cycles, and equipment diversity necessitate considerable investments for achieving smart manufacturing, which can be particularly challenging for small businesses. Retrofitting presents a viable solution, enabling the integration of low-cost sensors and microcontrollers with older machines to collect and transmit data. In this paper, we introduce a concept and a prototype for retrofitting industrial environments using lightweight web technologies at the edge. Our approach employs WebAssembly as a novel bytecode standard, facilitating a consistent development environment from the cloud to the edge by operating on both browsers and bare-metal hardware. By attaining near-native performance and modularity reminiscent of container-based service architectures, we demonstrate the feasibility of our approach. Our prototype was evaluated with an actual industrial robot within a showcase factory, including measurements of data exchange with a cutting-edge data lake system. We further extended the prototype to incorporate a peer-to-peer network that facilitates message routing and WebAssembly software updates. Our technology establishes a foundational framework for the transition towards Industry 4.0. By integrating considerations of sustainability and human factors, it further extends this groundwork to facilitate progression into Industry 5.0.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01237-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01237-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive retrofitting for industrial machines: utilizing webassembly and peer-to-peer connectivity on the edge
Leveraging previously untapped data sources offers significant potential for value creation in the manufacturing sector. However, asset-heavy shop floors, extended machine replacement cycles, and equipment diversity necessitate considerable investments for achieving smart manufacturing, which can be particularly challenging for small businesses. Retrofitting presents a viable solution, enabling the integration of low-cost sensors and microcontrollers with older machines to collect and transmit data. In this paper, we introduce a concept and a prototype for retrofitting industrial environments using lightweight web technologies at the edge. Our approach employs WebAssembly as a novel bytecode standard, facilitating a consistent development environment from the cloud to the edge by operating on both browsers and bare-metal hardware. By attaining near-native performance and modularity reminiscent of container-based service architectures, we demonstrate the feasibility of our approach. Our prototype was evaluated with an actual industrial robot within a showcase factory, including measurements of data exchange with a cutting-edge data lake system. We further extended the prototype to incorporate a peer-to-peer network that facilitates message routing and WebAssembly software updates. Our technology establishes a foundational framework for the transition towards Industry 4.0. By integrating considerations of sustainability and human factors, it further extends this groundwork to facilitate progression into Industry 5.0.