论环面非线性薛定谔方程的径向正归一化解

Jian Liang, Linjie Song
{"title":"论环面非线性薛定谔方程的径向正归一化解","authors":"Jian Liang, Linjie Song","doi":"10.1007/s00030-023-00917-0","DOIUrl":null,"url":null,"abstract":"<p>We are interested in the following semilinear elliptic problem: </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u + \\lambda u = u^{p-1}, x \\in T, \\\\ u &gt; 0, u = 0 \\ \\text {on} \\ \\partial T, \\\\ \\int _{T}u^{2} \\, dx= c \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(T = \\{x \\in \\mathbb {R}^{N}: 1&lt; |x| &lt; 2\\}\\)</span> is an annulus in <span>\\(\\mathbb {R}^{N}\\)</span>, <span>\\(N \\ge 2\\)</span>, <span>\\(p &gt; 1\\)</span> is Sobolev-subcritical, searching for conditions (about <i>c</i>, <i>N</i> and <i>p</i>) for the existence of positive radial solutions. We analyze the asymptotic behavior of <i>c</i> as <span>\\(\\lambda \\rightarrow +\\infty \\)</span> and <span>\\(\\lambda \\rightarrow -\\lambda _1\\)</span> to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in Calc Var Partial Differ Equ 56:1–27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained when <span>\\(N \\ge 3\\)</span> or if <span>\\(N = 2\\)</span> and <span>\\(p &lt; 6\\)</span>. Our paper also includes the demonstration of orbital stability/instability results.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus\",\"authors\":\"Jian Liang, Linjie Song\",\"doi\":\"10.1007/s00030-023-00917-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are interested in the following semilinear elliptic problem: </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u + \\\\lambda u = u^{p-1}, x \\\\in T, \\\\\\\\ u &gt; 0, u = 0 \\\\ \\\\text {on} \\\\ \\\\partial T, \\\\\\\\ \\\\int _{T}u^{2} \\\\, dx= c \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(T = \\\\{x \\\\in \\\\mathbb {R}^{N}: 1&lt; |x| &lt; 2\\\\}\\\\)</span> is an annulus in <span>\\\\(\\\\mathbb {R}^{N}\\\\)</span>, <span>\\\\(N \\\\ge 2\\\\)</span>, <span>\\\\(p &gt; 1\\\\)</span> is Sobolev-subcritical, searching for conditions (about <i>c</i>, <i>N</i> and <i>p</i>) for the existence of positive radial solutions. We analyze the asymptotic behavior of <i>c</i> as <span>\\\\(\\\\lambda \\\\rightarrow +\\\\infty \\\\)</span> and <span>\\\\(\\\\lambda \\\\rightarrow -\\\\lambda _1\\\\)</span> to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in Calc Var Partial Differ Equ 56:1–27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained when <span>\\\\(N \\\\ge 3\\\\)</span> or if <span>\\\\(N = 2\\\\)</span> and <span>\\\\(p &lt; 6\\\\)</span>. Our paper also includes the demonstration of orbital stability/instability results.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00917-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00917-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对以下半线性椭圆问题感兴趣: $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + \lambda u = u^{p-1}, x \in T, \ u > 0, u = 0 \text {on}\ Partial T, int _{T}u^{2}\dx= cend{array}\right.}\end{aligned}$ 其中(T = x in R}^{N}: 1< |x| < 2\} )是在(mathbb {R}^{N}\ )中的一个环面,(N ge 2\ ),(p > 1\ )是索博勒夫次临界,为正径向解的存在寻找条件(关于 c、N 和 p)。我们分析了 c 作为 \(\lambda \rightarrow +\infty \) 和 \(\lambda \rightarrow -\lambda _1\)的渐近行为,从而得到归一化解的存在、不存在和多重性。此外,基于这些解的性质,我们扩展了 Pierotti 等人在 Calc Var Partial Differ Equ 56:1-27, 2017 中得到的结果。与之前的结果不同,当 \(N \ge 3\) 或 \(N = 2\) and \(p < 6\) 时,可以得到具有任意大质量的正径向解。我们的论文还包括轨道稳定性/不稳定性结果的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus

We are interested in the following semilinear elliptic problem:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + \lambda u = u^{p-1}, x \in T, \\ u > 0, u = 0 \ \text {on} \ \partial T, \\ \int _{T}u^{2} \, dx= c \end{array}\right. } \end{aligned}$$

where \(T = \{x \in \mathbb {R}^{N}: 1< |x| < 2\}\) is an annulus in \(\mathbb {R}^{N}\), \(N \ge 2\), \(p > 1\) is Sobolev-subcritical, searching for conditions (about c, N and p) for the existence of positive radial solutions. We analyze the asymptotic behavior of c as \(\lambda \rightarrow +\infty \) and \(\lambda \rightarrow -\lambda _1\) to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in Calc Var Partial Differ Equ 56:1–27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained when \(N \ge 3\) or if \(N = 2\) and \(p < 6\). Our paper also includes the demonstration of orbital stability/instability results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信