{"title":"网络连接不畅环境下的车载露点计算智能缓存","authors":"Liang Zhao, Hongxuan Li, Enchao Zhang, Ammar Hawbani, Mingwei Lin, Shaohua Wan, Mohsen Guizani","doi":"10.1145/3643038","DOIUrl":null,"url":null,"abstract":"<p>In vehicular networks, some edge servers may not function properly due to the time-varying load condition and the uneven computing resource distribution, resulting in a low quality of caching services. To overcome this challenge, we develop a Vehicular dew computing (VDC) architecture for the first time by combining dew computing with vehicular networks, which can achieve wireless communication between vehicles in a resource-constrained environment. Consequently, it is crucial to develop an adaptive caching scheme that empowers vehicles to form efficient cooperation in VDC. In this paper, we propose an intelligent caching scheme based on VDC architecture, which includes two parts. First, to meet the dynamic nature of VDC, a spatiotemporal vehicle clustering algorithm is proposed to establish adaptive cooperation to assist content caching for vehicles. Second, the multi-armed bandit algorithm is employed to select suitable content for caching in vehicles based on real-time file popularity, and a model is established to dynamically update each vehicle’s request preferences. Extensive experiments are conducted to demonstrate that the proposed scheme has excellent performance in terms of cluster head stability and cache hit rate.</p>","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"76 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Caching for Vehicular Dew Computing in Poor Network Connectivity Environments\",\"authors\":\"Liang Zhao, Hongxuan Li, Enchao Zhang, Ammar Hawbani, Mingwei Lin, Shaohua Wan, Mohsen Guizani\",\"doi\":\"10.1145/3643038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In vehicular networks, some edge servers may not function properly due to the time-varying load condition and the uneven computing resource distribution, resulting in a low quality of caching services. To overcome this challenge, we develop a Vehicular dew computing (VDC) architecture for the first time by combining dew computing with vehicular networks, which can achieve wireless communication between vehicles in a resource-constrained environment. Consequently, it is crucial to develop an adaptive caching scheme that empowers vehicles to form efficient cooperation in VDC. In this paper, we propose an intelligent caching scheme based on VDC architecture, which includes two parts. First, to meet the dynamic nature of VDC, a spatiotemporal vehicle clustering algorithm is proposed to establish adaptive cooperation to assist content caching for vehicles. Second, the multi-armed bandit algorithm is employed to select suitable content for caching in vehicles based on real-time file popularity, and a model is established to dynamically update each vehicle’s request preferences. Extensive experiments are conducted to demonstrate that the proposed scheme has excellent performance in terms of cluster head stability and cache hit rate.</p>\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643038\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643038","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Intelligent Caching for Vehicular Dew Computing in Poor Network Connectivity Environments
In vehicular networks, some edge servers may not function properly due to the time-varying load condition and the uneven computing resource distribution, resulting in a low quality of caching services. To overcome this challenge, we develop a Vehicular dew computing (VDC) architecture for the first time by combining dew computing with vehicular networks, which can achieve wireless communication between vehicles in a resource-constrained environment. Consequently, it is crucial to develop an adaptive caching scheme that empowers vehicles to form efficient cooperation in VDC. In this paper, we propose an intelligent caching scheme based on VDC architecture, which includes two parts. First, to meet the dynamic nature of VDC, a spatiotemporal vehicle clustering algorithm is proposed to establish adaptive cooperation to assist content caching for vehicles. Second, the multi-armed bandit algorithm is employed to select suitable content for caching in vehicles based on real-time file popularity, and a model is established to dynamically update each vehicle’s request preferences. Extensive experiments are conducted to demonstrate that the proposed scheme has excellent performance in terms of cluster head stability and cache hit rate.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.