N. S. Ningsih, F. Hanifah, L. F. Yani, R. Rachmayani
{"title":"雅加达湾海水高程和潮汐动力学对海岸填海的模拟响应","authors":"N. S. Ningsih, F. Hanifah, L. F. Yani, R. Rachmayani","doi":"10.1007/s10236-024-01598-8","DOIUrl":null,"url":null,"abstract":"<p>The Jakarta Bay Reclamation (JBR) is a long-term protection project to prevent flooding in Jakarta. This study examines the effect of the JBR on water levels using the Regional Ocean Model (ROMS) to measure both the residual water levels (non-astronomic tide) and the total water levels generated by tides and Typhoons Hagibis and Mitag in November 2007. The results show that the tidal range in Jakarta Bay increased after the JBR, reaching 22.4% at Bekasi. The most significant amplitude change is S2 for the principal constituents and MK3 for shallow water constituents. The JBR does not change the direction of the propagation for S2 and MK3 in the Jakarta Bay, but it does change the phase lag. In addition, the JBR affects water elevations caused by tides and typhoons, with increased elevations between 2.69 and 11.53 cm. Although the aims of the land reclamation as a potential engineering solution are to provide for long-term protection against flooding from the sea, during the worst conditions (e.g., spring tides with perigee and remote forcing from typhoons), land reclamation will actually increase total water levels and amplitude of tidal constituents.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"46-47 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulated response of seawater elevation and tidal dynamics in Jakarta Bay to coastal reclamation\",\"authors\":\"N. S. Ningsih, F. Hanifah, L. F. Yani, R. Rachmayani\",\"doi\":\"10.1007/s10236-024-01598-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Jakarta Bay Reclamation (JBR) is a long-term protection project to prevent flooding in Jakarta. This study examines the effect of the JBR on water levels using the Regional Ocean Model (ROMS) to measure both the residual water levels (non-astronomic tide) and the total water levels generated by tides and Typhoons Hagibis and Mitag in November 2007. The results show that the tidal range in Jakarta Bay increased after the JBR, reaching 22.4% at Bekasi. The most significant amplitude change is S2 for the principal constituents and MK3 for shallow water constituents. The JBR does not change the direction of the propagation for S2 and MK3 in the Jakarta Bay, but it does change the phase lag. In addition, the JBR affects water elevations caused by tides and typhoons, with increased elevations between 2.69 and 11.53 cm. Although the aims of the land reclamation as a potential engineering solution are to provide for long-term protection against flooding from the sea, during the worst conditions (e.g., spring tides with perigee and remote forcing from typhoons), land reclamation will actually increase total water levels and amplitude of tidal constituents.</p>\",\"PeriodicalId\":19387,\"journal\":{\"name\":\"Ocean Dynamics\",\"volume\":\"46-47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10236-024-01598-8\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10236-024-01598-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Simulated response of seawater elevation and tidal dynamics in Jakarta Bay to coastal reclamation
The Jakarta Bay Reclamation (JBR) is a long-term protection project to prevent flooding in Jakarta. This study examines the effect of the JBR on water levels using the Regional Ocean Model (ROMS) to measure both the residual water levels (non-astronomic tide) and the total water levels generated by tides and Typhoons Hagibis and Mitag in November 2007. The results show that the tidal range in Jakarta Bay increased after the JBR, reaching 22.4% at Bekasi. The most significant amplitude change is S2 for the principal constituents and MK3 for shallow water constituents. The JBR does not change the direction of the propagation for S2 and MK3 in the Jakarta Bay, but it does change the phase lag. In addition, the JBR affects water elevations caused by tides and typhoons, with increased elevations between 2.69 and 11.53 cm. Although the aims of the land reclamation as a potential engineering solution are to provide for long-term protection against flooding from the sea, during the worst conditions (e.g., spring tides with perigee and remote forcing from typhoons), land reclamation will actually increase total water levels and amplitude of tidal constituents.
期刊介绍:
Ocean Dynamics is an international journal that aims to publish high-quality peer-reviewed articles in the following areas of research:
Theoretical oceanography (new theoretical concepts that further system understanding with a strong view to applicability for operational or monitoring purposes);
Computational oceanography (all aspects of ocean modeling and data analysis);
Observational oceanography (new techniques or systematic approaches in measuring oceanic variables, including all aspects of monitoring the state of the ocean);
Articles with an interdisciplinary character that encompass research in the fields of biological, chemical and physical oceanography are especially encouraged.