论两个共享集支持下的 L 函数和同调函数的唯一性

IF 0.6 4区 数学 Q3 MATHEMATICS
Sanjay Mallick, Pratap Basak
{"title":"论两个共享集支持下的 L 函数和同调函数的唯一性","authors":"Sanjay Mallick, Pratap Basak","doi":"10.1007/s40315-023-00513-4","DOIUrl":null,"url":null,"abstract":"<p>The paper presents general criteria for the uniqueness of a non-constant meromorphic function having finitely many poles and a non-constant <i>L</i>-function in the Selberg class when they share two sets. Our results provide the best cardinalities ever obtained in the literature improving all the existing results Li et al. (Lith. Math. J. <b>58</b>(2), 249–262 (2018)), Kundu and Banerjee (Rend. Circ. Mat. Palermo (2) <b>70</b>(3), 1227–1244 (2021), Banerjee and Kundu (Lith. Math. J. <b>61</b>(2), 161–179 (2021) with regard to the most general setting. Further, we have exhibited a number of examples throughout the paper showing the far reaching applications of our results.\n</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Uniqueness of L-Functions and Meromorphic Functions Under the Aegis of two Shared Sets\",\"authors\":\"Sanjay Mallick, Pratap Basak\",\"doi\":\"10.1007/s40315-023-00513-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents general criteria for the uniqueness of a non-constant meromorphic function having finitely many poles and a non-constant <i>L</i>-function in the Selberg class when they share two sets. Our results provide the best cardinalities ever obtained in the literature improving all the existing results Li et al. (Lith. Math. J. <b>58</b>(2), 249–262 (2018)), Kundu and Banerjee (Rend. Circ. Mat. Palermo (2) <b>70</b>(3), 1227–1244 (2021), Banerjee and Kundu (Lith. Math. J. <b>61</b>(2), 161–179 (2021) with regard to the most general setting. Further, we have exhibited a number of examples throughout the paper showing the far reaching applications of our results.\\n</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00513-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-023-00513-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了当具有有限多个极点的非恒定分形函数和非恒定 L 函数共享两个集合时,它们在塞尔伯格类中的唯一性的一般判据。我们的结果提供了迄今为止文献中获得的最好的心数,改进了所有现有结果 李等人(Lith.Math.J. 58(2), 249-262 (2018))、Kundu 和 Banerjee(Rend.Circ.Mat.Palermo (2) 70(3), 1227-1244 (2021))、Banerjee 和 Kundu(Lith.Math.61(2),161-179 (2021))的最一般设置。此外,我们在整篇论文中列举了大量实例,展示了我们的结果的深远应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Uniqueness of L-Functions and Meromorphic Functions Under the Aegis of two Shared Sets

The paper presents general criteria for the uniqueness of a non-constant meromorphic function having finitely many poles and a non-constant L-function in the Selberg class when they share two sets. Our results provide the best cardinalities ever obtained in the literature improving all the existing results Li et al. (Lith. Math. J. 58(2), 249–262 (2018)), Kundu and Banerjee (Rend. Circ. Mat. Palermo (2) 70(3), 1227–1244 (2021), Banerjee and Kundu (Lith. Math. J. 61(2), 161–179 (2021) with regard to the most general setting. Further, we have exhibited a number of examples throughout the paper showing the far reaching applications of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信