沉积物捕集器样本揭示了北冰洋Calanus hyperboreus种群结构的区域差异

IF 1.9 3区 环境科学与生态学 Q2 MARINE & FRESHWATER BIOLOGY
Koki Tokuhiro, Kohei Matsuno, Jonaotaro Onodera, Makoto Sampei, Amane Fujiwara, Naomi Harada, Barbara Niehoff, Eva-Maria Nöthig, Atsushi Yamaguchi
{"title":"沉积物捕集器样本揭示了北冰洋Calanus hyperboreus种群结构的区域差异","authors":"Koki Tokuhiro, Kohei Matsuno, Jonaotaro Onodera, Makoto Sampei, Amane Fujiwara, Naomi Harada, Barbara Niehoff, Eva-Maria Nöthig, Atsushi Yamaguchi","doi":"10.1093/plankt/fbad059","DOIUrl":null,"url":null,"abstract":"Calanus hyperboreus is one of the dominant copepod species in the Arctic zooplankton communities. The impact of climate change varies among regions within the Arctic, implying that C. hyperboreus populations may be differently affected at different locations, but knowledge on seasonal population dynamics in relation to biogeography is scarce. To fill this gap, we counted C. hyperboreus in samples from sediment traps that were moored from 2009 to 2014 in three regions of the Arctic Ocean (eastern Fram Strait, northern Chukchi Sea and MacKenzie Trough). The C. hyperboreus flux increased between April and May in all regions, likely associated with the ascent from overwintering depth to the surface. In the descent period, high fluxes were observed between July and September in the Fram Strait, between September and November in the northern Chukchi Sea, and between August and October in the MacKenzie Trough, suggesting that the timing of descent varied among the regions characterized by differences in light regime, phytoplankton development and water temperature. The copepodite stage composition in the eastern Fram Strait and the MacKenzie Trough varied with season, suggesting successful local reproduction while it was uniform in the northern Chukchi Sea, possibly because the population is fueled by advection.","PeriodicalId":16800,"journal":{"name":"Journal of Plankton Research","volume":"110 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sediment trap samples reveal regional differences in the population structure of Calanus hyperboreus from the Arctic Ocean\",\"authors\":\"Koki Tokuhiro, Kohei Matsuno, Jonaotaro Onodera, Makoto Sampei, Amane Fujiwara, Naomi Harada, Barbara Niehoff, Eva-Maria Nöthig, Atsushi Yamaguchi\",\"doi\":\"10.1093/plankt/fbad059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calanus hyperboreus is one of the dominant copepod species in the Arctic zooplankton communities. The impact of climate change varies among regions within the Arctic, implying that C. hyperboreus populations may be differently affected at different locations, but knowledge on seasonal population dynamics in relation to biogeography is scarce. To fill this gap, we counted C. hyperboreus in samples from sediment traps that were moored from 2009 to 2014 in three regions of the Arctic Ocean (eastern Fram Strait, northern Chukchi Sea and MacKenzie Trough). The C. hyperboreus flux increased between April and May in all regions, likely associated with the ascent from overwintering depth to the surface. In the descent period, high fluxes were observed between July and September in the Fram Strait, between September and November in the northern Chukchi Sea, and between August and October in the MacKenzie Trough, suggesting that the timing of descent varied among the regions characterized by differences in light regime, phytoplankton development and water temperature. The copepodite stage composition in the eastern Fram Strait and the MacKenzie Trough varied with season, suggesting successful local reproduction while it was uniform in the northern Chukchi Sea, possibly because the population is fueled by advection.\",\"PeriodicalId\":16800,\"journal\":{\"name\":\"Journal of Plankton Research\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plankton Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/plankt/fbad059\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plankton Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/plankt/fbad059","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

超桡足类(Calanus hyperboreus)是北极浮游动物群落中的主要桡足类物种之一。气候变化对北极不同地区的影响各不相同,这意味着超小桡足类动物种群在不同地点可能受到不同的影响,但与生物地理相关的季节性种群动态知识却十分匮乏。为了填补这一空白,我们对 2009 年至 2014 年期间在北冰洋三个地区(弗拉姆海峡东部、楚科奇海北部和麦肯齐海槽)停泊的沉积物捕集器样本中的 C. hyperboreus 进行了计数。所有地区的 C. hyperboreus 通量在 4 月至 5 月期间都有所增加,可能与从越冬深度上升到海面有关。在下降期,弗拉姆海峡在 7 月至 9 月、楚科奇海北部在 9 月至 11 月、麦肯齐海槽在 8 月至 10 月期间观察到高通量,这表明各地区的下降时间因光制度、浮游植物发育和水温的不同而各异。弗拉姆海峡东部和麦肯齐海槽的桡足类阶段组成随季节变化,表明当地繁殖成功,而楚科奇海北部的桡足类阶段组成一致,这可能是因为种群是由平流推动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sediment trap samples reveal regional differences in the population structure of Calanus hyperboreus from the Arctic Ocean
Calanus hyperboreus is one of the dominant copepod species in the Arctic zooplankton communities. The impact of climate change varies among regions within the Arctic, implying that C. hyperboreus populations may be differently affected at different locations, but knowledge on seasonal population dynamics in relation to biogeography is scarce. To fill this gap, we counted C. hyperboreus in samples from sediment traps that were moored from 2009 to 2014 in three regions of the Arctic Ocean (eastern Fram Strait, northern Chukchi Sea and MacKenzie Trough). The C. hyperboreus flux increased between April and May in all regions, likely associated with the ascent from overwintering depth to the surface. In the descent period, high fluxes were observed between July and September in the Fram Strait, between September and November in the northern Chukchi Sea, and between August and October in the MacKenzie Trough, suggesting that the timing of descent varied among the regions characterized by differences in light regime, phytoplankton development and water temperature. The copepodite stage composition in the eastern Fram Strait and the MacKenzie Trough varied with season, suggesting successful local reproduction while it was uniform in the northern Chukchi Sea, possibly because the population is fueled by advection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plankton Research
Journal of Plankton Research 生物-海洋学
CiteScore
3.50
自引率
9.50%
发文量
65
审稿时长
1 months
期刊介绍: Journal of Plankton Research publishes innovative papers that significantly advance the field of plankton research, and in particular, our understanding of plankton dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信