{"title":"通过埃及分数实现最佳两期欠逼近的阈值","authors":"Hùng Việt Chu","doi":"10.1016/j.indag.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi></math></span><span> be the greedy algorithm that, for each </span><span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, produces an infinite sequence of positive integers <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> satisfying <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>. For natural numbers <span><math><mrow><mi>p</mi><mo><</mo><mi>q</mi></mrow></math></span>, let <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span><span> denote the smallest positive integer </span><span><math><mi>j</mi></math></span> such that <span><math><mi>p</mi></math></span> divides <span><math><mrow><mi>q</mi><mo>+</mo><mi>j</mi></mrow></math></span>. Continuing Nathanson’s study of two-term underapproximations, we show that whenever <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩽</mo><mn>3</mn></mrow></math></span>, <span><math><mi>G</mi></math></span> gives the (unique) best two-term underapproximation of <span><math><mrow><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span>; i.e., if <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span> for some <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></mrow></math></span>, then <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. However, the same conclusion fails for every <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩾</mo><mn>4</mn></mrow></math></span>. Next, we study stepwise underapproximation by <span><math><mi>G</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>θ</mi><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> be the <span><math><mi>m</mi></math></span>th error term. We compare <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> to a superior underapproximation of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><mrow><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>\n(<span><math><mrow><mi>N</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mo>⩾</mo><mn>2</mn></mrow></msub></mrow></math></span>), and characterize when <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. One characterization is <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mi>N</mi><msubsup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span>. Hence, for rational <span><math><mi>θ</mi></math></span>, we only have <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for finitely many <span><math><mi>m</mi></math></span>. However, there are irrational numbers such that <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for all <span><math><mi>m</mi></math></span>. Along the way, various auxiliary results are encountered.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 350-375"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A threshold for the best two-term underapproximation by Egyptian fractions\",\"authors\":\"Hùng Việt Chu\",\"doi\":\"10.1016/j.indag.2024.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>G</mi></math></span><span> be the greedy algorithm that, for each </span><span><math><mrow><mi>θ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, produces an infinite sequence of positive integers <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> satisfying <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>θ</mi></mrow></math></span>. For natural numbers <span><math><mrow><mi>p</mi><mo><</mo><mi>q</mi></mrow></math></span>, let <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span><span> denote the smallest positive integer </span><span><math><mi>j</mi></math></span> such that <span><math><mi>p</mi></math></span> divides <span><math><mrow><mi>q</mi><mo>+</mo><mi>j</mi></mrow></math></span>. Continuing Nathanson’s study of two-term underapproximations, we show that whenever <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩽</mo><mn>3</mn></mrow></math></span>, <span><math><mi>G</mi></math></span> gives the (unique) best two-term underapproximation of <span><math><mrow><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span>; i.e., if <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span> for some <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></mrow></math></span>, then <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. However, the same conclusion fails for every <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>⩾</mo><mn>4</mn></mrow></math></span>. Next, we study stepwise underapproximation by <span><math><mi>G</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>θ</mi><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> be the <span><math><mi>m</mi></math></span>th error term. We compare <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> to a superior underapproximation of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><mrow><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>\\n(<span><math><mrow><mi>N</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mo>⩾</mo><mn>2</mn></mrow></msub></mrow></math></span>), and characterize when <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. One characterization is <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mi>N</mi><msubsup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span>. Hence, for rational <span><math><mi>θ</mi></math></span>, we only have <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for finitely many <span><math><mi>m</mi></math></span>. However, there are irrational numbers such that <span><math><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>N</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> for all <span><math><mi>m</mi></math></span>. Along the way, various auxiliary results are encountered.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 2\",\"pages\":\"Pages 350-375\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000065\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是贪心算法,对于每个 θ∈(0,1],产生满足 ∑n=1∞1/an=θ 的正整数 (an)n=1∞ 的无穷序列。对于自然数 p<q,让 Υ(p,q) 表示使 p 平分 q+j 的最小正整数 j。延续纳坦森对两期欠逼近的研究,我们证明,只要 Υ(p,q)⩽3,G 就给出 p/q 的(唯一)最佳两期欠逼近;也就是说,如果对于某个 x1,x2∈N,1/x1+1/x2<p/q,那么 1/x1+1/x2⩽1/a1+1/a2。然而,对于每个 Υ(p,q)⩾4,同样的结论都不成立。让 em=θ-∑n=1m1/an 为第 m 个误差项。我们将 1/am 与 em-1 的优越欠逼近进行比较,用 N/bm 表示(N∈N⩾2),并描述 1/am=N/bm 时的特征。其中一个特征是 am+1⩾Nam2-am+1。因此,对于有理数 θ,我们只有在有限多个 m 时才有 1/am=N/bm。然而,存在无理数,使得所有 m 都有 1/am=N/bm。
A threshold for the best two-term underapproximation by Egyptian fractions
Let be the greedy algorithm that, for each , produces an infinite sequence of positive integers satisfying . For natural numbers , let denote the smallest positive integer such that divides . Continuing Nathanson’s study of two-term underapproximations, we show that whenever , gives the (unique) best two-term underapproximation of ; i.e., if for some , then . However, the same conclusion fails for every . Next, we study stepwise underapproximation by . Let be the th error term. We compare to a superior underapproximation of , denoted by
(), and characterize when . One characterization is . Hence, for rational , we only have for finitely many . However, there are irrational numbers such that for all . Along the way, various auxiliary results are encountered.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.