Borbála Hortobágyi, Stéphane Petit, Baptiste Marteau, Gabriel Melun, Hervé Piégay
{"title":"探索大型林木动态水文驱动因素的高分辨率年际框架","authors":"Borbála Hortobágyi, Stéphane Petit, Baptiste Marteau, Gabriel Melun, Hervé Piégay","doi":"10.1002/rra.4242","DOIUrl":null,"url":null,"abstract":"Rivers with alluvial bars store more wood than those without, supplied through channel shifting. However, wood dynamics (arrival or new deposits, departure or entrainment, and stable or immobile pieces) can vary substantially over time in response to critical hydrological drivers that are largely unknown. To evaluate them, we studied the dynamics of large wood pieces and logjams along a 12-km reach of the lower Allier River using six series of aerial images of variable resolution acquired between 2009 and 2020, during which maximum river discharge fluctuated around the dominant flood discharge (Q<sub>1.5</sub>) that is potentially the bankfull discharge along this well-preserved not incised reach. Individual wood departure was best correlated with water levels exceeding dominant flood discharge. The duration of the highest magnitude flood was best correlated with wood depositions, with shorter floods resulting in a higher number of deposits. Finally, most of the wood remained stable when river discharge did not exceed 60% of Q<sub>1.5</sub> over a long period of time. Changes in inter-annual wood budget (reach-scale) depend on the duration over which discharge exceeded 60% of Q<sub>1.5</sub>. Hydrological conditions driving jam build-up and removal were similar to those controlling individual wood piece dynamics. The results suggest that specific hydrological conditions influence the dynamics of large wood and log jams in the Allier River. Understanding the dynamics of large wood and its impact on river morphology is fundamental for successful river management and habitat restoration initiatives.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"214 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-resolution inter-annual framework for exploring hydrological drivers of large wood dynamics\",\"authors\":\"Borbála Hortobágyi, Stéphane Petit, Baptiste Marteau, Gabriel Melun, Hervé Piégay\",\"doi\":\"10.1002/rra.4242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rivers with alluvial bars store more wood than those without, supplied through channel shifting. However, wood dynamics (arrival or new deposits, departure or entrainment, and stable or immobile pieces) can vary substantially over time in response to critical hydrological drivers that are largely unknown. To evaluate them, we studied the dynamics of large wood pieces and logjams along a 12-km reach of the lower Allier River using six series of aerial images of variable resolution acquired between 2009 and 2020, during which maximum river discharge fluctuated around the dominant flood discharge (Q<sub>1.5</sub>) that is potentially the bankfull discharge along this well-preserved not incised reach. Individual wood departure was best correlated with water levels exceeding dominant flood discharge. The duration of the highest magnitude flood was best correlated with wood depositions, with shorter floods resulting in a higher number of deposits. Finally, most of the wood remained stable when river discharge did not exceed 60% of Q<sub>1.5</sub> over a long period of time. Changes in inter-annual wood budget (reach-scale) depend on the duration over which discharge exceeded 60% of Q<sub>1.5</sub>. Hydrological conditions driving jam build-up and removal were similar to those controlling individual wood piece dynamics. The results suggest that specific hydrological conditions influence the dynamics of large wood and log jams in the Allier River. Understanding the dynamics of large wood and its impact on river morphology is fundamental for successful river management and habitat restoration initiatives.\",\"PeriodicalId\":21513,\"journal\":{\"name\":\"River Research and Applications\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"River Research and Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4242\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4242","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A high-resolution inter-annual framework for exploring hydrological drivers of large wood dynamics
Rivers with alluvial bars store more wood than those without, supplied through channel shifting. However, wood dynamics (arrival or new deposits, departure or entrainment, and stable or immobile pieces) can vary substantially over time in response to critical hydrological drivers that are largely unknown. To evaluate them, we studied the dynamics of large wood pieces and logjams along a 12-km reach of the lower Allier River using six series of aerial images of variable resolution acquired between 2009 and 2020, during which maximum river discharge fluctuated around the dominant flood discharge (Q1.5) that is potentially the bankfull discharge along this well-preserved not incised reach. Individual wood departure was best correlated with water levels exceeding dominant flood discharge. The duration of the highest magnitude flood was best correlated with wood depositions, with shorter floods resulting in a higher number of deposits. Finally, most of the wood remained stable when river discharge did not exceed 60% of Q1.5 over a long period of time. Changes in inter-annual wood budget (reach-scale) depend on the duration over which discharge exceeded 60% of Q1.5. Hydrological conditions driving jam build-up and removal were similar to those controlling individual wood piece dynamics. The results suggest that specific hydrological conditions influence the dynamics of large wood and log jams in the Allier River. Understanding the dynamics of large wood and its impact on river morphology is fundamental for successful river management and habitat restoration initiatives.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.