{"title":"通过主动学习和快速集合进行数据和计算效率较高的偏差挖掘","authors":"","doi":"10.1007/s10844-024-00841-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Detecting deviant traces in business process logs is crucial for modern organizations, given the harmful impact of deviant behaviours (e.g., attacks or faults). However, training a Deviance Prediction Model (DPM) by solely using supervised learning methods is impractical in scenarios where only few examples are labelled. To address this challenge, we propose an Active-Learning-based approach that leverages multiple DPMs and a temporal ensembling method that can train and merge them in a few training epochs. Our method needs expert supervision only for a few unlabelled traces exhibiting high prediction uncertainty. Tests on real data (of either complete or ongoing process instances) confirm the effectiveness of the proposed approach.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data- & compute-efficient deviance mining via active learning and fast ensembles\",\"authors\":\"\",\"doi\":\"10.1007/s10844-024-00841-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Detecting deviant traces in business process logs is crucial for modern organizations, given the harmful impact of deviant behaviours (e.g., attacks or faults). However, training a Deviance Prediction Model (DPM) by solely using supervised learning methods is impractical in scenarios where only few examples are labelled. To address this challenge, we propose an Active-Learning-based approach that leverages multiple DPMs and a temporal ensembling method that can train and merge them in a few training epochs. Our method needs expert supervision only for a few unlabelled traces exhibiting high prediction uncertainty. Tests on real data (of either complete or ongoing process instances) confirm the effectiveness of the proposed approach.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-024-00841-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00841-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data- & compute-efficient deviance mining via active learning and fast ensembles
Abstract
Detecting deviant traces in business process logs is crucial for modern organizations, given the harmful impact of deviant behaviours (e.g., attacks or faults). However, training a Deviance Prediction Model (DPM) by solely using supervised learning methods is impractical in scenarios where only few examples are labelled. To address this challenge, we propose an Active-Learning-based approach that leverages multiple DPMs and a temporal ensembling method that can train and merge them in a few training epochs. Our method needs expert supervision only for a few unlabelled traces exhibiting high prediction uncertainty. Tests on real data (of either complete or ongoing process instances) confirm the effectiveness of the proposed approach.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.